ترغب بنشر مسار تعليمي؟ اضغط هنا

An R-matrix model for three-body final states is presented and applied to a recent measurement of the neutron energy spectrum from the T+T->2n+alpha reaction. The calculation includes the n-alpha and n-n interactions in the final state, angular momen tum conservation, antisymmetrization, and the interference between different channels. A good fit to the measured spectrum is obtained, where clear evidence for the 5He ground state is observed. The model is also used to predict the alpha-particle spectrum from T+T as well as particle spectra from 3He+3He. The R-matrix approach presented here is very general, and can be adapted to a wide variety of problems with three-body final states.
Spectra of outgoing neutrons and protons from the 6Li+55Mn reaction and protons from the a+57Fe reaction have been measured with beams of 15 MeV 6Li ions and 30 MeV alpha-particles. These reactions proceed through the same 61Ni nucleus at the same ex citation energy, thus allowing the difference in reaction mechanism to be studied. It is shown that spectra from the first reaction measured at backward angles are due to emission from a traditional compound nucleus reaction, in which the intermediate nucleus has reached statistical equilibrium; the spectra from the second reaction contain a significant fraction of pre-equilibrium emission at all angles. Level density pa- rameters of the residual nucleus 60Co have been obtained from the first reaction. Both emission spectra and angular distributions have been measured for the second reaction. It was found that the pre-equilibrium component exhibits a forward-peaked angular distribution, as expected, but with a steeper slope than predicted and with an unusual slight rise at angles above 120deg. The backward- angle rise is explained qualitatively by the dominance of the multi-step compound mechanism at backward angles.
The two-step cascade method previously used in neutron capture experiments is now applied to a proton capture reaction. The spectrum of two-step cascades populating the first 2+ level of 60Ni has been measured with 59Co(p,2gamma)60Ni reaction. The si mulation technique used for the spectrum analysis allows one to reveal the range of possible shapes of both E1 and M1 gamma-strength functions. The low-energy enhancement previously observed in 3He induced reactions is seen to appear in M1 strength functions of 60Ni.
The energy spectra of neutrons, protons, and alpha-particles have been measured from the d+59Co and 3He+58Fe reactions leading to the same compound nucleus, 61$Ni. The experimental cross sections have been compared to Hauser-Feshbach model calculatio ns using different input level density models. None of them have been found to agree with experiment. It manifests the serious problem with available level density parameterizations especially those based on neutron resonance spacings and density of discrete levels. New level densities and corresponding Fermi-gas parameters have been obtained for reaction product nuclei such as 60Ni,60Co, and 57Fe.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا