ﻻ يوجد ملخص باللغة العربية
Spectra of outgoing neutrons and protons from the 6Li+55Mn reaction and protons from the a+57Fe reaction have been measured with beams of 15 MeV 6Li ions and 30 MeV alpha-particles. These reactions proceed through the same 61Ni nucleus at the same excitation energy, thus allowing the difference in reaction mechanism to be studied. It is shown that spectra from the first reaction measured at backward angles are due to emission from a traditional compound nucleus reaction, in which the intermediate nucleus has reached statistical equilibrium; the spectra from the second reaction contain a significant fraction of pre-equilibrium emission at all angles. Level density pa- rameters of the residual nucleus 60Co have been obtained from the first reaction. Both emission spectra and angular distributions have been measured for the second reaction. It was found that the pre-equilibrium component exhibits a forward-peaked angular distribution, as expected, but with a steeper slope than predicted and with an unusual slight rise at angles above 120deg. The backward- angle rise is explained qualitatively by the dominance of the multi-step compound mechanism at backward angles.
Excitation functions were measured for the $^{55}$Mn(n,2n)$^{54}$Mn, $^{55}$Mn(n,$alpha$)$^{52}$V, $^{63}$Cu(n,$alpha$)$^{60}$Co, $^{65}$Cu(n,2n)$^{64}$Cu, and $^{65}$Cu(n,p)$^{65}$Ni reactions from 13.47 to 14.83 MeV. The experimental cross sections
New experimental data for the inclusive reactions (p,xp) and (p,xd) on isotopes of the nuclei $^{90,92}$Zr and $^{92}$Mo, have been measured at E$_{p}$=30.3 MeV, which has not been investigated in detail so far. We show the extension of the pre-equil
The MEDLEY setup based at The Svedberg Laboratory (TSL), Uppsala, Sweden has previously been used to measure double-differential cross-sections for elastic nd scattering, as well as light ion production reactions for various nuclei in the interaction
A number of accelerator-based isotope production facilities utilize 100- to 200-MeV proton beams due to the high production rates enabled by high-intensity beam capabilities and the greater diversity of isotope production brought on by the long range
A theoretical approach was developed to describe secondary particle emission in heavy ion collisions, with special regards to pre-equilibrium {alpha}-particle production. Griffins model of non-equilibrium processes is used to account for the first st