ترغب بنشر مسار تعليمي؟ اضغط هنا

We describe the impact of the full one-loop electroweak terms of O(alpha_s alpha_EM^3) entering the electron-positron into three-jet cross-section from sqrt(s)=M_Z to TeV scale energies. We include both factorisable and non-factorisable virtual corre ctions and photon bremsstrahlung. Their importance for the measurement of alpha_S from jet rates and shape variables is explained qualitatively and illustrated quantitatively, also in presence of b-tagging.
Precision studies of the production of a high-transverse momentum lepton in association with missing energy at hadron colliders require that electroweak and QCD higher-order contributions are simultaneously taken into account in theoretical predictio ns and data analysis. Here we present a detailed phenomenological study of the impact of electroweak and strong contributions, as well as of their combination, to all the observables relevant for the various facets of the $psmartpap to {rm lepton} + X$ physics programme at hadron colliders, including luminosity monitoring and Parton Distribution Functions constraint, $W$ precision physics and search for new physics signals. We provide a theoretical recipe to carefully combine electroweak and strong corrections, that are mandatory in view of the challenging experimental accuracy already reached at the Fermilab Tevatron and aimed at the CERN LHC, and discuss the uncertainty inherent the combination. We conclude that the theoretical accuracy of our calculation can be conservatively estimated to be about 2% for standard event selections at the Tevatron and the LHC, and about 5% in the very high $W$ transverse mass/lepton transverse momentum tails. We also provide arguments for a more aggressive error estimate (about 1% and 3%, respectively) and conclude that in order to attain a one per cent accuracy: 1) exact mixed ${cal O}(alpha alpha_s)$ corrections should be computed in addition to the already available NNLO QCD contributions and two-loop electroweak Sudakov logarithms; 2) QCD and electroweak corrections should be coherently included into a single event generator.
We describe the impact of the full one-loop EW terms of O(alpha_s alpha_EM^3) entering the electron-positron into three-jet cross-section from sqrt{s}=M_Z to TeV scale energies. We include both factorisable and non-factorisable virtual corrections, p hoton bremsstrahlung but not the real emission of W and Z bosons. Their importance for the measurement of alpha_S from jet rates and shape variables is explained qualitatively and illustrated quantitatively.
We compute the full one-loop Electro-Weak (EW) contributions of O(alpha_S alpha_EM^3) entering the electron-positron into a quark-antiquark pair plus one gluon cross section at the Z peak and LC energies in presence of polarisation of the initial sta te and by retaining the event orientation of the final state. We include both factorisable and non-factorisable virtual corrections, photon bremsstrahlung but not the real emission of W^pm and Z bosons. Their importance for the final state orientation is illustrated for beam polarisation setups achieved at SLC and foreseen at ILC and CLIC.
The relevance of single-W and single-Z production processes at hadron colliders is well known: in the present paper the status of theoretical calculations of Drell-Yan processes is summarized and some results on the combination of electroweak and QCD corrections to a sample of observables of the process $p p to W^pm to mu^pm + X$ at the LHC are discussed. The phenomenological analysis shows that a high-precision knowledge of QCD and a careful combination of electroweak and strong contributions is mandatory in view of the anticipated LHC experimental accuracy. One of the authors (O.N.) dedicates these notes to Prof. S. Jadach, in honour of his 60th birthday and grateful for all that Prof. Jadach taught him during their fruitful collaboration.
We compute, in the MSSM framework, the sum of the one-loop electroweak and of the total QED radiation effects for the process $pp to t W+X$, initiated by the parton process $bgto tW$. Combining these terms with the existing NLO calculations of SM and SUSY QCD corrections, we analyze the overall one-loop supersymmetric effects on the partial rates of the process, obtained by integrating the differential cross section up to a final variable invariant mass. We conclude that, for some choices of the SUSY parameters and for relatively small final invariant masses, they could reach the relative ten percent level, possibly relevant for a dedicated experimental effort at LHC.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا