ترغب بنشر مسار تعليمي؟ اضغط هنا

Full one-loop electroweak corrections to e+e- to 3 jets at linear colliders

236   0   0.0 ( 0 )
 نشر من قبل Carlo Michel Carloni Calame
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the impact of the full one-loop electroweak terms of O(alpha_s alpha_EM^3) entering the electron-positron into three-jet cross-section from sqrt(s)=M_Z to TeV scale energies. We include both factorisable and non-factorisable virtual corrections and photon bremsstrahlung. Their importance for the measurement of alpha_S from jet rates and shape variables is explained qualitatively and illustrated quantitatively, also in presence of b-tagging.



قيم البحث

اقرأ أيضاً

Large scale calculation for the radiative corrections required for the current and future collider experiments can be done automatically using the GRACE-LOOP system. Here several results for e+e- --> 3-body processes are presented including e+e- --> e+e-H and e+e- --> nu nubar gamma.
The paper describes high-precision theoretical predictions obtained for the cross sections of the process $e^+e^- to ZH$ for future electron-positron colliders. The calculations performed using the SANC platform taking into account the full contribut ion of one-loop electroweak radiative corrections, as well as longitudinal polarization of the initial beams. Numerical results are given for the energy range $E_{cm}=250$ GeV - $1000$ GeV with various polarization degrees.
By using the GRACE-Loop system, we calculate the full $mathcal{O}(alpha)$ electroweak radiative corrections to the process $e^+e^- rightarrow e^+e^- gamma$, which is important for future investigations at the International Linear Collider (ILC). With the GRACE-Loop system, the calculations are checked numerically by three consistency tests: ultraviolet finiteness, infrared finiteness, and gauge-parameter independence. The results show good numerical stability when quadruple precision is used. In the phenomenological results, we find that the electroweak corrections to the total cross section range from $sim -4%$ to $sim -21%$ when $sqrt{s}$ varies from $250$ GeV to $1$ TeV. The corrections also significantly affect the differential cross sections, which are a function of the invariant masses and angles and the final-particle energies. Such corrections will play an important role for the high-precision program at the ILC.
68 - A.Denner , S.Dittmaier , M.Roth 2006
The calculation of the full electroweak O(alpha) corrections to the charged-current four-fermion production processes e+e- --> nu_tau tau+ mu- anti-nu_mu, u anti-d mu- anti-nu_mu, and u anti-d s anti-c is briefly reviewed. The calculation is performe d using the complex-mass scheme for the gauge-boson resonances. The evaluation of the occurring one-loop tensor integrals, which include 5- and 6-point functions, requires new techniques. The effects of the complete O(alpha) corrections to the total cross section and to the production-angle distribution are discussed and compared to predictions based on the double-pole approximation, revealing that the latter approximation is not sufficient to fully exploit the potential of a future linear collider in an analysis of W-boson pairs at high energies.
We present the full ${{cal O}}(alpha)$ electroweak radiative corrections to associated Higgs top pair production in $e^+e^-$ collisions. We combine these results with a new calculation of the full one-loop QCD corrections. The computation is performe d with the help of {tt GRACE-loop}. We find that the ${{cal O}}(alpha)$ correction can be larger than the ${{cal O}}(alpha_s)$ corrections around the peak of the cross section especially for a light Higgs mass. At threshold these corrections are swamped by the QCD corrections which are enhanced by the gluon Coulomb contribution. We have also subtracted the complete QED corrections and expressed the genuine weak correction both in the $alpha$-scheme and the $G_mu$-scheme. This reveals that the genuine weak corrections are not negligible and should be taken into account for a precision measurement of this cross section and the extraction of the Yukawa $t bar t H$ coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا