ترغب بنشر مسار تعليمي؟ اضغط هنا

112 - C.G. Few , S. Courty , B.K. Gibson 2014
We trace the formation and advection of several elements within a cosmological adaptive mesh refinement simulation of an L* galaxy. We use nine realisations of the same initial conditions with different stellar Initial Mass Functions (IMFs), mass lim its for type-II and type-Ia supernovae (SNII, SNIa) and stellar lifetimes to constrain these sub-grid phenomena. Our code includes self-gravity, hydrodynamics, star formation, radiative cooling and feedback from multiple sources within a cosmological framework. Under our assumptions of nucleosynthesis we find that SNII with progenitor masses of up to 100 Msun are required to match low metallicity gas oxygen abundances. Tardy SNIa are necessary to reproduce the classical chemical evolution knee in [O/Fe]-[Fe/H]: more prompt SNIa delayed time distributions do not reproduce this feature. Within our framework of hydrodynamical mixing of metals and galaxy mergers we find that chemical evolution is sensitive to the shape of the IMF and that there exists a degeneracy with the mass range of SNII. We look at the abundance plane and present the properties of different regions of the plot, noting the distinct chemical properties of satellites and a series of nested discs that have greater velocity dispersions, are more alpha-rich and metal poor with age.
We examine radial and vertical metallicity gradients using a suite of disk galaxy simulations, supplemented with two classic chemical evolution approaches. We determine the rate of change of gradient and reconcile differences between extant models an d observations within the `inside-out disk growth paradigm. A sample of 25 disks is used, consisting of 19 from our RaDES (Ramses Disk Environment Study) sample, realised with the adaptive mesh refinement code RAMSES. Four disks are selected from the MUGS (McMaster Unbiased Galaxy Simulations) sample, generated with the smoothed particle hydrodynamics (SPH) code GASOLINE, alongside disks from Rahimi et al. (GCD+) and Kobayashi & Nakasato (GRAPE-SPH). Two chemical evolution models of inside-out disk growth were employed to contrast the temporal evolution of their radial gradients with those of the simulations. We find that systematic differences exist between the predicted evolution of radial abundance gradients in the RaDES and chemical evolution models, compared with the MUGS sample; specifically, the MUGS simulations are systematically steeper at high-redshift, and present much more rapid evolution in their gradients. We find that the majority of the models predict radial gradients today which are consistent with those observed in late-type disks, but they evolve to this self-similarity in different fashions, despite each adhering to classical `inside-out growth. We find that radial dependence of the efficiency with which stars form as a function of time drives the differences seen in the gradients; systematic differences in the sub-grid physics between the various codes are responsible for setting these gradients. Recent, albeit limited, data at redshift z=1.5 are consistent with the steeper gradients seen in our SPH sample, suggesting a modest revision of the classical chemical evolution models may be required.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا