ترغب بنشر مسار تعليمي؟ اضغط هنا

We discuss the implementation of the nuclear model based on realistic nuclear spectral functions in the GENIE neutrino interaction generator. Besides improving on the Fermi gas description of the nuclear ground state, our scheme involves a new prescr iption for $Q^2$ selection, meant to efficiently enforce energy momentum conservation. The results of our simulations, validated through comparison to electron scattering data, have been obtained for a variety of target nuclei, ranging from carbon to argon, and cover the kinematical region in which quasi elastic scattering is the dominant reaction mechanism. We also analyse the influence of the adopted nuclear model on the determination of neutrino oscillation parameters.
We use distorted wave electron scattering calculations to extract the weak charge form factor F_W(q), the weak charge radius R_W, and the point neutron radius R_n, of 208Pb from the PREX parity violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer q=0.475 fm$^{-1}$. We find F_W(q) =0.204 pm 0.028 (exp) pm 0.001 (model). We use the Helm model to infer the weak radius from F_W(q). We find R_W= 5.826 pm 0.181 (exp) pm 0.027 (model) fm. Here the exp error includes PREX statistical and systematic errors, while the model error describes the uncertainty in R_W from uncertainties in the surface thickness sigma of the weak charge density. The weak radius is larger than the charge radius, implying a weak charge skin where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius R_n=5.751 pm 0.175 (exp) pm 0.026 (model) pm 0.005 (strange) fm$, from R_W. Here there is only a very small error (strange) from possible strange quark contributions. We find R_n to be slightly smaller than R_W because of the nucleons size. Finally, we find a neutron skin thickness of R_n-R_p=0.302pm 0.175 (exp) pm 0.026 (model) pm 0.005 (strange) fm, where R_p is the point proton radius.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا