ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical Implementation of lepton-nucleus interactions and its effect on neutrino oscillation analysis

115   0   0.0 ( 0 )
 نشر من قبل Camillo Mariani
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the implementation of the nuclear model based on realistic nuclear spectral functions in the GENIE neutrino interaction generator. Besides improving on the Fermi gas description of the nuclear ground state, our scheme involves a new prescription for $Q^2$ selection, meant to efficiently enforce energy momentum conservation. The results of our simulations, validated through comparison to electron scattering data, have been obtained for a variety of target nuclei, ranging from carbon to argon, and cover the kinematical region in which quasi elastic scattering is the dominant reaction mechanism. We also analyse the influence of the adopted nuclear model on the determination of neutrino oscillation parameters.



قيم البحث

اقرأ أيضاً

152 - L.A. Harewood , R. Gran 2019
Rescattering following a neutrino-nucleus reaction changes the number, energy, and direction of detectable hadrons. In turn, this affects the selection and kinematic distributions of subsamples of neutrino events used for interaction or oscillation a nalysis. This technical note focuses on three forms of two-body rescattering. Elastic hadron+nucleus scattering primarily changes the direction of the hadron with very little energy transfer. Secondly, a hadron+nucleon quasi-elastic process leads to the knockout of a single struck nucleon, possibly with charge exchange between the two hadrons. Also, a pion can be absorbed leading to the ejection of two nucleons. There was an error in the code of the {small GENIE} neutrino event generator that affects these processes. We present examples of the change with the fixed version of the scattering process, but also compare these specifically to turning off elastic scattering completely, which is similar to other neutrino event generator configurations or a potential Equick-fix to already generated samples. Three examples are taken from current topics of interest: transverse kinematics observables in quasielastic neutrino reactions, the pion angle with respect to the incoming and outgoing lepton for $Delta$ reactions with a charged pion in the final state, and the angle between two protons in reactions with no pions present. Elastic hadron+nucleus scattering in its unfixed form makes a large distortion in distributions of transverse kinematic imbalances scattering, but only mild distortion in other observables. The distortion of the other two processes is also mild for all distributions considered. The correct form of hadron+nucleus scattering process could play a role in describing the width and center of the sharp peak in the inferred Fermi-motion of the struck nucleon or be benchmarked using (e,ep) data.
Several mistakes have been found in recent papers that purport to reanalyze the backgrounds to the LSND neutrino oscillation signal. Once these mistakes are corrected, then it is determined that the background estimates in the papers are close to (if not lower than) the LSND background estimate.
Neutrino oscillations physics is entered in the precision era. In this context accelerator-based neutrino experiments need a reduction of systematic errors to the level of a few percent. Today one of the most important sources of systematic errors ar e neutrino-nucleus cross sections which in the hundreds-MeV to few-GeV energy region are known with a precision not exceeding 20%. In this article we review the present experimental and theoretical knowledge of the neutrino-nucleus interaction physics. After introducing neutrino oscillation physics and accelerator-based neutrino experiments, we overview general aspects of the neutrino-nucleus cross sections, both theoretical and experimental views. Then we focus on these quantities in different reaction channels. We start with the quasielastic and quasielastic-like cross section, putting a special emphasis on multinucleon emission channel which attracted a lot of attention in the last few years. We review the main aspects of the different microscopic models for this channel by discussing analogies and differences among them.The discussion is always driven by a comparison with the experimental data. We then consider the one pion production channel where data-theory agreement remains very unsatisfactory. We describe how to interpret pion data, then we analyze in particular the puzzle related to the impossibility of theoretical models and Monte Carlo to simultaneously describe MiniBooNE and MINERvA experimental results. Inclusive cross sections are also discussed, as well as the comparison between the $ u_mu$ and $ u_e$ cross sections, relevant for the CP violation experiments. The impact of the nuclear effects on the reconstruction of neutrino energy and on the determination of the neutrino oscillation parameters is reviewed. A window to the future is finally opened by discussing projects and efforts in future detectors, beams, and analysis.
In $ u/bar{ u}$-N/A interactions SIS is technically defined in terms of the four-momentum transfer to the hadronic system as non-resonant meson production with $Q^2 lessapprox 1~GeV^2$. This non-resonant meson production intermixes with resonant meso n production in a regime of similar effective hadronic mass W of the interaction. As $Q^2$ grows and surpasses this $approx 1~GeV^2$ limit, non-resonant interactions begin to take place with quarks within the nucleon indicating the start of DIS region. SIS and DIS regions have received varying degrees of attention from the community. While the theoretical / phenomenological study of $ u$-nucleon and $ u$-nucleus DIS scattering is advanced, such studies of a large portion of the SIS region, particularly the SIS to DIS transition region, have hardly begun. Experimentally, the SIS and the DIS regions for $ u$-nucleon scattering have minimal results and only in the experimental study of the $ u$-nucleus DIS region are there significant results for some nuclei. Since current and future neutrino oscillation experiments have contributions from both higher W SIS and DIS kinematic regions and these regions are in need of both considerable theoretical and experimental study, this review will concentrate on these SIS to DIS transition and DIS kinematic regions surveying our knowledge and the current challenges.
73 - A.B. Balantekin 2017
Different approaches to the calculation of neutrino-nucleus cross sections are summarized. Potential impact of improving the nuclear physics input into neutrino interactions and cross section calculations on uncovering new physics is discussed using the example of reactor anomaly. Importance of a thorough understanding of neutrino interactions in astrophysics and cosmology is highlighted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا