ترغب بنشر مسار تعليمي؟ اضغط هنا

Vortices in superconductors driven at microwave frequencies exhibit a response related to the interplay between the vortex viscosity, pinning strength, and flux creep effects. At the same time, the trapping of vortices in superconducting microwave re sonant circuits contributes excess loss and can result in substantial reductions in the quality factor. Thus, understanding the microwave vortex response in superconducting thin films is important for the design of such circuits, including superconducting qubits and photon detectors, which are typically operated in small, but non-zero, magnetic fields. By cooling in fields of the order of 100 $mu$T and below, we have characterized the magnetic field and frequency dependence of the microwave response of a small density of vortices in resonators fabricated from thin films of Re and Al, which are common materials used in superconducting microwave circuits. Above a certain threshold cooling field, which is different for the Re and Al films, vortices become trapped in the resonators. Vortices in the Al resonators contribute greater loss and are influenced more strongly by flux creep effects than in the Re resonators. This different behavior can be described in the framework of a general vortex dynamics model.
89 - T.W. Heitmann 2008
We have developed a picovoltmeter using a Nb dc Superconducting QUantum Interference Device (SQUID) for measuring the flux-flow voltage from a small number of vortices moving through a submicron weak-pinning superconducting channel. We have applied t his picovoltmeter to measure the vortex response in a single channel arranged in a circle on a Corbino disk geometry. The circular channel allows the vortices to follow closed orbits without encountering any sample edges, thus eliminating the influence of entry barriers.
219 - K. Yu 2008
The controlled motion of objects through narrow channels is important in many fields. We have fabricated asymmetric weak-pinning channels in a superconducting thin-film strip for controlling the dynamics of vortices. The lack of pinning allows the vo rtices to move through the channels with the dominant interaction determined by the shape of the channel walls. We present measurements of vortex dynamics in the channels and compare these with similar measurements on a set of uniform-width channels. While the uniform-width channels exhibit a symmetric response for both directions through the channel, the vortex motion through the asymmetric channels is quite different, with substantial asymmetries in both the static depinning and dynamic flux flow. This vortex ratchet effect has a rich dependence on magnetic field and driving force amplitude.
162 - J. Koo , C. Song , S. Ji 2007
Comprehensive x-ray scattering studies, including resonant scattering at Mn L-edge, Tb L- and M-edges, were performed on single crystals of TbMn2O5. X-ray intensities were observed at a forbidden Bragg position in the ferroelectric phases, in additio n to the lattice and the magnetic modulation peaks. Temperature dependences of their intensities and the relation between the modulation wave vectors provide direct evidences of exchange striction induced ferroelectricity. Resonant x-ray scattering results demonstrate the presence of multiple magnetic orders by exhibiting their different temperature dependences. The commensurate-to-incommensurate phase transition around 24 K is attributed to discommensuration through phase slipping of the magnetic orders in spin frustrated geometries. We proposed that the low temperature incommensurate phase consists of the commensurate magnetic domains separated by anti-phase domain walls which reduce spontaneous polarizations abruptly at the transition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا