ترغب بنشر مسار تعليمي؟ اضغط هنا

We present conductance measurements of a ballistic circular stadium influenced by a scanning gate. When the tip depletes the electron gas below, we observe very pronounced and regular fringes covering the entire stadium. The fringes correspond to tra nsmitted modes in constrictions formed between the tip-induced potential and the boundaries of the stadium. Moving the tip and counting the fringes gives us exquisite control over the transmission of these constrictions. We use this control to form a quantum ring with a specific number of modes in each arm showing the Aharonov-Bohm effect in low-field magnetoconductance measurements.
232 - B. Kung , C. Rossler , M. Beck 2012
We present comparative measurements of the charge occupation and conductance of a GaAs/AlGaAs quantum dot. The dot charge is measured with a capacitively coupled quantum point contact sensor. In the single-level Coulomb blockade regime near equilibri um, charge and conductance signals are found to be proportional to each other. We conclude that in this regime, the two signals give equivalent information about the quantum dot system. Out of equilibrium, we study the inelastic-cotunneling regime. We compare the measured differential dot charge with an estimate assuming a dwell time of transmitted carriers on the dot given by h/E, where E is the blockade energy of first-order tunneling. The measured signal is of a similar magnitude as the estimate, compatible with a picture of cotunneling as transmission through a virtual intermediate state with a short lifetime.
210 - S. Schnez , C. Rossler , T. Ihn 2011
We perform scanning-gate microscopy on a quantum-point contact. It is defined in a high-mobility two-dimensional electron gas of an AlGaAs/GaAs heterostructure, giving rise to a weak disorder potential. The lever arm of the scanning tip is significan tly smaller than that of the split gates defining the conducting channel of the quantum-point contact. We are able to observe that the conducting channel is shifted in real space when asymmetric gate voltages are applied. The observed shifts are consistent with transport data and numerical estimations.
98 - B. Kung , C. Rossler , M. Beck 2011
We present a low-temperature experimental test of the fluctuation theorem for electron transport through a double quantum dot. The rare entropy-consuming system trajectories are detected in the form of single charges flowing against the source-drain bias by using time-resolved charge detection with a quantum point contact. We find that these trajectories appear with a frequency that agrees with the theoretical predictions even under strong nonequilibrium conditions, when the finite bandwidth of the charge detection is taken into account.
135 - C. Rossler , B. Kung , S. Droscher 2010
In order to employ solid state quantum dots as qubits, both a high degree of control over the confinement potential as well as sensitive charge detection are essential. We demonstrate that by combining local anodic oxidation with local Schottky-gates , these criteria are nicely fulfilled in the resulting hybrid device. To this end, a quantum dot with adjacent charge detector is defined. After tuning the quantum dot to contain only a single electron, we are able to observe the charge detector signal of the quantum dot state for a wide range of tunnel couplings.
65 - C. Rossler , K.-D. Hof , S. Manus 2008
We report on optically induced transport phenomena in freely suspended channels containing a two-dimensional electron gas (2DEG). The submicron devices are fabricated in AlGaAs/GaAs heterostructures by etching techniques. The photoresponse of the dev ices can be understood in terms of the combination of photogating and a photodoping effect. The hereby enhanced electronic conductance exhibits a time constant in the range of one to ten milliseconds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا