ترغب بنشر مسار تعليمي؟ اضغط هنا

63 - C. O. Heinke 2014
We use Chandra and XMM observations of the globular clusters $omega$ Cen and NGC 6397 to measure the spectrum of their quiescent neutron stars (NSs), and thus to constrain the allowed ranges of mass and radius for each. We also use Hubble Space Teles cope photometry of NGC 6397 to identify a potential optical companion to the quiescent NS, and find evidence that the companion lacks hydrogen. We carefully consider a number of systematic problems, and show that the choices of atmospheric composition, interstellar medium abundances, and cluster distances can have important effects on the inferred NS mass and radius. We find that for typical NS masses, the radii of both NSs are consistent with the 10-13 km range favored by recent nuclear physics experiments. This removes the evidence suggested by Guillot and collaborators for an unusually small NS radius, which relied upon the small inferred radius of the NGC 6397 NS.
119 - L. M. Forestell 2014
We combine new and archival Chandra observations of the globular cluster NGC 6752 to create a deeper X-ray source list, and study the faint radio millisecond pulsars (MSPs) of this cluster. We detect four of the five MSPs in NGC 6752, and present evi dence for emission from the fifth. The X-rays from these MSPs are consistent with thermal emission from the neutron star surfaces, with significantly higher fitted blackbody temperatures than other globular cluster MSPs (though we cannot rule out contamination by nonthermal emission or other X-ray sources). NGC 6752 E is one of the lowest-L_X MSPs known, with L_X(0.3-8 keV)=1.0+0.9-0.5*10^30 ergs/s. We check for optical counterparts of the three isolated MSPs in the core using new HST ACS images, finding no plausible counterparts, which is consistent with their lack of binary companions. We compile measurements of L_X and spindown power for radio MSPs from the literature, including errors where feasible. We find no evidence that isolated MSPs have lower L_X than MSPs in binary systems, omitting binary MSPs showing emission from intrabinary wind shocks. We find weak evidence for an inverse correlation between the estimated temperature of the MSP X-rays and the known MSP spin period, consistent with the predicted shrinking of the MSP polar cap size with increasing spin period.
157 - K. G. Elshamouty 2013
The thermal evolution of young neutron stars (NSs) reflects the neutrino emission properties of their cores. Heinke et al. (2010) measured a 3.6+/-0.6% decay in the surface temperature of the Cassiopeia A (Cas A) NS between 2000 and 2009, using archi val data from the Chandra X-ray Observatory ACIS-S detector in Graded mode. Page et al. (2011) and Shternin et al. (2011) attributed this decay to enhanced neutrino emission from a superfluid neutron transition in the core. Here we test this decline, combining analysis of the Cas A NS using all Chandra X-ray detectors and modes (HRC-S, HRC-I, ACIS-I, ACIS-S in Faint mode, and ACIS-S in Graded mode) and adding a 2012 May ACIS-S Graded mode observation, using the most current calibrations (CALDB 4.5.5.1). We measure the temperature changes from each detector separately and test for systematic effects due to the nearby filaments of the supernova remnant. We find a 0.92%-2.0% decay over 10 years in the effective temperature, inferred from HRC-S data, depending on the choice of source and background extraction regions, with a best-fit decay of 1.0+/-0.7%. In comparison, the ACIS-S Graded data indicate a temperature decay of 3.1%-5.0% over 10 years, with a best-fit decay of 3.5+/-0.4%. Shallower observations using the other detectors yield temperature decays of 2.6+/-1.9% (ACIS-I), 2.1+/-1.0% (HRC-I), and 2.1+/-1.9% (ACIS-S Faint mode) over 10 years. Our best estimate indicates a decline of 2.9+/-0.9 (stat) +1.6/-0.3 (sys) % over 10 years. The complexity of the bright and varying supernova remnant background makes a definitive interpretation of archival Cas A Chandra observations difficult. A temperature decline of 1-3.5% over 10 years would indicate extraordinarily fast cooling of the NS that can be regulated by superfluidity of nucleons in the stellar core.
65 - W. S. Stacey 2012
We observed the globular cluster NGC 6652 with Chandra for 47.5 ks, detecting six known X-ray sources, as well as five previously undetected X-ray sources. Source A (XB 1832-330) is a well-known bright low-mass X-ray binary (LXMB). The second brighte st source, B, has a spectrum that fits well to either a power-law model (Gamma ~ 1.3) or an absorbed hot gas emission model (kT ~ 34 keV). Its unabsorbed 0.5-10 keV luminosity (L_X = 1.6+-0.1*10^34 erg/s) is suggestive of a neutron star primary; however, Source B exhibits unusual variability for a LMXB, varying by over an order of magnitude on timescales of ~ 100 s. Source Cs spectrum contains a strong low-energy component below 1 keV. Its spectrum is well fit to a simplified magnetic cataclysmic variable (CV) model, thus the soft component may be explained by a hot polar cap of a magnetic CV. Source D has an average L_X (0.5-10 keV) ~ 9*10^32 erg/s, and its spectrum is well fit to a neutron star atmosphere model. This is indicative of a quiescent neutron star LXMB, suggesting Source D may be the third known LMXB in NGC 6652. Source E has L_X (0.5-10 keV) ~ 3*10^32 erg/s, while Source F has L_X (0.5-10 keV) ~ 1*10^32 erg/s. Their relatively hard X-ray spectra are well-fit by power-law or plasma emission models. Five newly detected fainter sources have luminosities between 1-5*10^31 erg/s. NGC 6652 has an unusually flat X-ray luminosity function compared to other globular clusters, which may be connected to its extremely high central density.
Using deep Chandra observations of the globular cluster M28, we study the quiescent X-ray emission of a neutron star in a low-mass X-ray binary in order to constrain the chemical composition of the neutron star atmosphere and the equation of state of dense matter. We fit the spectrum with different neutron star atmosphere models composed of hydrogen, helium or carbon. The parameter values obtained with the carbon model are unphysical and such a model can be ruled out. Hydrogen and helium models give realistic parameter values for a neutron star, and the derived mass and radius are clearly distinct depending on the composition of the atmosphere. The hydrogen model gives masses/radii consistent with the canonical values of 1.4 Msun and 10 km, and would allow for the presence of exotic matter inside neutron stars. On the other hand, the helium model provides solutions with higher masses/radii, consistent with the stiffest equations of state. Measurements of neutron star masses/radii by spectral fitting should consider the possibility of heavier element atmospheres, which produce larger masses/radii for the same data, unless the composition of the accretor is known independently.
We observed the nearby, low-density globular cluster M71 (NGC 6838) with the Chandra X-ray Observatory to study its faint X-ray populations. Five X-ray sources were found inside the cluster core radius, including the known eclipsing binary millisecon d pulsar (MSP) PSR J1953+1846A. The X-ray light curve of the source coincident with this MSP shows marginal evidence for periodicity at the binary period of 4.2 h. Its hard X-ray spectrum and luminosity resemble those of other eclipsing binary MSPs in 47 Tuc, suggesting a similar shock origin of the X-ray emission. A further 24 X-ray sources were found within the half-mass radius, reaching to a limiting luminosity of 1.5 10^30 erg/s (0.3-8 keV). From a radial distribution analysis, we find that 18+/-6 of these 29 sources are associated with M71, somewhat more than predicted, and that 11+/-6 are background sources, both galactic and extragalactic. M71 appears to have more X-ray sources between L_X=10^30--10^31 erg/s than expected by extrapolating from other studied clusters using either mass or collision frequency. We explore the spectra and variability of these sources, and describe the results of ground-based optical counterpart searches.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا