ترغب بنشر مسار تعليمي؟ اضغط هنا

We study resonant inelastic x-ray scattering (RIXS) peaks corresponding to low energy particle-hole excited states of metallic FeTe and semi-metallic TiSe$_2$ for photon incident energy tuned near the $L_{3}$ absorption edge of Fe and Ti respectively . We show that the cross section amplitudes are well described within a renormalization group theory where the effect of the core electrons is captured by effective dielectric functions expressed in terms of the the atomic scattering parameters $f_1$ of Fe and Ti. This method can be used to extract the dynamical structure factor from experimental RIXS spectra in metallic systems.
The dynamics of S=1/2 quantum spins on a 2D square lattice lie at the heart of the mystery of the cuprates cite{Hayden2004,Vignolle2007,Li2010,LeTacon2011,Coldea2001,Headings2010,Braicovich2010}. In bulk cuprates such as LCO{}, the presence of a weak interlayer coupling stabilizes 3D N{e}el order up to high temperatures. In a truly 2D system however, thermal spin fluctuations melt long range order at any finite temperature cite{Mermin1966}. Further, quantum spin fluctuations transfer magnetic spectral weight out of a well-defined magnon excitation into a magnetic continuum, the nature of which remains controversial cite{Sandvik2001,Ho2001,Christensen2007,Headings2010}. Here, we measure the spin response of emph{isolated one-unit-cell thick layers} of LCO{}. We show that coherent magnons persist even in a single layer of LCO{} despite the loss of magnetic order, with no evidence for resonating valence bond (RVB)-like spin correlations cite{Anderson1987,Hsu1990,Christensen2007}. Thus these excitations are well described by linear spin wave theory (LSWT). We also observe a high-energy magnetic continuum in the isotropic magnetic response. This high-energy continuum is not well described by 2 magnon LSWT, or indeed any existing theories.
In the light of recent measurements of the C 1s core level dispersion in graphene [Nat. Phys. 6, 345 (2010)], we explore the interplay between the elastic scattering of photoelectrons and the surface core level shifts with regard to the determination of core level binding energies in Au(111) and Cu3Au(100). We find that an artificial shift is created in the binding energies of the Au 4f core levels, that exhibits a dependence on the emission angle, as well as on the spectral intensity of the core level emission itself. Using a simple model, we are able to reproduce the angular dependence of the shift and relate it to the anisotropy in the electron emission from the bulk layers. Our results demonstrate that interpretation of variation of the binding energy of core-levels should be conducted with great care and must take into account the possible influence of artificial shifts induced by elastic scattering.
98 - C. Monney 2009
We present angle-resolved photoemission experiments on 1T-TiSe2 at temperatures ranging from 13K to 288K. The data evidence a dramatic renormalization of the conduction band below 100K, whose origin can be explained with the exciton condensate phase model. The renormalization translates into a substantial effective mass reduction of the dominant charge carriers and can be directly related to the low temperature downturn of the resistivity of 1T-TiSe2. This observation is in opposition to the common belief that strong interactions produce heavier quasiparticles through an increased effective mass.
83 - C. Monney 2009
The charge density wave phase transition of 1T-TiSe2 is studied by angle-resolved photoemission over a wide temperature range. An important chemical potential shift which strongly evolves with temperature is evidenced. In the framework of the exciton condensate phase, the detailed temperature dependence of the associated order parameter is extracted. Having a mean-field-like behaviour at low temperature, it exhibits a non-zero value above the transition, interpreted as the signature of strong excitonic fluctuations, reminiscent of the pseudo-gap phase of high temperature superconductors. Integrated intensity around the Fermi level is found to display a trend similar to the measured resistivity and is discussed within the model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا