ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of elastic scattering on the measurement of core-level binding energy dispersion in x-ray photoemission spectroscopy

72   0   0.0 ( 0 )
 نشر من قبل Eike F. Schwier Eike F. Schwier
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the light of recent measurements of the C 1s core level dispersion in graphene [Nat. Phys. 6, 345 (2010)], we explore the interplay between the elastic scattering of photoelectrons and the surface core level shifts with regard to the determination of core level binding energies in Au(111) and Cu3Au(100). We find that an artificial shift is created in the binding energies of the Au 4f core levels, that exhibits a dependence on the emission angle, as well as on the spectral intensity of the core level emission itself. Using a simple model, we are able to reproduce the angular dependence of the shift and relate it to the anisotropy in the electron emission from the bulk layers. Our results demonstrate that interpretation of variation of the binding energy of core-levels should be conducted with great care and must take into account the possible influence of artificial shifts induced by elastic scattering.

قيم البحث

اقرأ أيضاً

A laser-based angle resolved photoemission (APRES) system utilizing 6 eV photons from the fourth harmonic of a mode-locked Ti:sapphire oscillator is described. This light source greatly increases the momentum resolution and photoelectron count rate, while reducing extrinsic background and surface sensitivity relative to higher energy light sources. In this review, the optical system is described, and special experimental considerations for low-energy ARPES are discussed. The calibration of the hemispherical electron analyzer for good low-energy angle-mode performance is also described. Finally, data from the heavily studied high T_c superconductor Bi2Sr2CaCu2O8+delta (Bi2212) is compared to the results from higher photon energies.
290 - Ying Fu , Le Wang , Hu Cheng 2019
We perform core-level X-ray photoemission spectroscopy (XPS) and electronic Raman scattering studies of electronic structures and spin fluctuations in the bulk samples of the nickelate oxide NdNiO$_2$. According to Nd $3d$ and O $1s$ XPS spectra, we conclude that NdNiO$_2$ has a large transfer energy. From the analysis of the main line of the Ni $2p_{3/2}$ XPS, we confirm the NiO$_2$ planes in NdNiO$_2$ are of Mott-Hubbard type in the Zaanen-Sawatzky-Allen scheme. The two-magnon peak in the Raman scattering provides direct evidence for the strong spin-fluctuation in NdNiO$_2$. The peak position determines the antiferromagnetic exchange $J=25$~meV. Our experimental results agree well with our previous theoretical results.
Valence-band ultraviolet photoemission spectroscopy (UPS) at 173K and 6p core-level X-ray photoemission spectroscopy (XPS) at room temperature were performed on a high quality uranium single crystal. Significant agreement is found with first-principl es electronic band-structure calculations, using a generalized gradient approximation (GGA). In addition, using Low Energy Electron Diffraction (LEED) for the (001) surface, we find a well-ordered orthorhombic crystallographic structure representative of the bulk material.
We have performed a detailed study of Cu $2p$ core-level spectra in single layer La$_{2-x}$Sr$_{x}$CuO$_{4}$, La doped Bi$_2$Sr$_{1.6}$La$_{0.4}$CuO$_{6+delta}$ (Bi2201) and bilayer Bi$_2$Sr$_{2}$CaCu$_{2}$O$_{8+delta}$ (Bi2212) high-temperature supe rconductors by using hard x-ray photoemission (HX-PES). We identify the Cu$^{2+}$ derived (i) the Zhang-Rice singlet (ZRS) feature, (ii) the $d^{n+1}underline{L}$ (ligand screened) feature, (iii) the $d^{n}$ satellite feature, as well as the hole-doping derived high binding energy feature in the main peak. In Bi-based cuprates, intensities of the $d^{n}$ satellite features seem to be strongly enhanced compared to La$_{2-x}$Sr$_{x}$CuO$_{4}$. From x-ray photon energy dependent measurements, it is shown that the increased intensity in the satellite region is associated with Bi $4s$ core-level spectral intensity. The corrected $d^{n}$ satellite intensity is independent of the doping content or number of Cu-O layers. Our results suggest a correlation of the relative intensity of ZRS feature and hole-doping induced high binding energy spectral changes in the main peak with superconductivity.
We have probed the crystalline electric-field ground states of pure $|J = 7/2, J_z = pm 5/2rangle$ as well as the anisotropic $c$-$f$ hybridization in both valence fluctuating systems $alpha$- and $beta$-YbAlB$_4$ by linear polarization dependence of angle-resolved core level photoemission spectroscopy. Interestingly, the small but distinct difference between abyb was found in the polar angle dependence of linear dichroism, indicating the difference in the anisotropy of $c$-$f$ hybridization which may be essential to a heavy Fermi liquid state in $alpha$-YbAlB$_4$ and a quantum critical state in $beta$-YbAlB$_4$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا