ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust properties are very likely affected by the environment in which dust grains evolve. For instance, some analyses of cold clumps (7 K- 17 K) indicate that the aggregation process is favored in dense environments. However, studying warm (30 K-40 K) dust emission at long wavelength ($lambda$$>$300 $mu$m) has been limited because it is difficult to combine far infared-to-millimeter (FIR-to-mm) spectral coverage and high angular resolution for observations of warm dust grains. Using Herschel data from 70 to 500 $mu$m, which are part of the Herschel infrared Galactic (Hi-GAL) survey combined with 1.1 mm data from the Bolocam Galactic Plane Survey (BGPS), we compared emission in two types of environments: ultra-compact HII (UCHII) regions, and cold molecular clumps (denoted as cold clumps). With this comparison we tested dust emission models in the FIR-to-mm domain that reproduce emission in the diffuse medium, in these two environments (UCHII regions and cold clumps). We also investigated their ability to predict the dust emission in our Galaxy. We determined the emission spectra in twelve UCHII regions and twelve cold clumps, and derived the dust temperature (T) using the recent two-level system (TLS) model with three sets of parameters and the so-called T-$beta$ (temperature-dust emissvity index) phenomenological models, with $beta$ set to 1.5, 2 and 2.5. We tested the applicability of the TLS model in warm regions for the first time. This analysis indicates distinct trends in the dust emission between cold and warm environments that are visible through changes in the dust emissivity index. However, with the use of standard parameters, the TLS model is able to reproduce the spectral behavior observed in cold and warm regions, from the change of the dust temperature alone, whereas a T-$beta$ model requires $beta$ to be known.
310 - B. Kundys , V. Iurchuk , C. Meny 2014
Ferroelectric devices use their electric polarization ferroic order as the switching and storage physical quantity for memory applications. However, additional built-in physical quantities and memory paradigms are requested for applications. We propo se here to take advantage of the multiferroic properties of ferroelectrics, using ferroelasticity to create a remnant strain, persisting after stressing the material by converse piezoelectricity means. While large electric fields are needed to switch the polarization, here writing occurs at subcoercive much lower field values, which can efficiently imprint multiple remnant strain states. A proof-of-principle device, with the simplest and non-optimized resistance strain detection design, is shown here to exhibit 13-memory states of high reproducibility and reliability. The related advantages in lower power consumption and limited device fatigue make our approach relevant for applications.
We present a magnetoresistive-photoresistive device based on the interaction of a piezomagnetic CoFe thin film with a photostrictive BiFeO3 substrate that undergoes light-induced strain. The magnitude of the resistance and magnetoresistance in the Co Fe film can be controlled by the wavelength of the incident light on the BiFeO3. Moreover, a light-induced decrease in anisotropic magnetoresistance is detected due to an additional magnetoelastic contribution to magnetic anisotropy of the CoFe film. This effect may find applications in photo-sensing systems, wavelength detectors and can possibly open a research development in light-controlled magnetic switching properties for next generation magnetoresistive memory devices.
343 - B. Kundys , M. Viret , C. Meny 2012
In electrically polar solids optomechanical effects result from the combination of two main processes, electric field-induced strain and photon-induced voltages. Whereas the former depends on the electrostrictive ability of the sample to convert elec tric energy into mechanical energy, the latter is caused by the capacity of photons with appropriate energy to generate charges and, therefore, can depend on wavelength.We report here on mechanical deformation of BiFeO3 and its response time to discrete wavelengths of incident light ranging from 365 to 940 nm. The mechanical response of BiFeO3 is found to have two maxima in near-UV and green spectral wavelength regions.
234 - A. Coupeaud , K. Demyk , C. Meny 2011
Cold dust grains emission in the FIR/submm is usually expressed as a modified black body law in which the dust mass absorption coefficient (MAC), is described with a temperature- and wavelength-independent emissivity spectral index, beta. However, nu merous data from space and balloon-born missions and recently from Herschel and Planck show that dust emission is not well understood, as revealed by the observed anti-correlation of beta with the grain temperature. In order to give astronomers the necessary data to interpret FIR/submm observations, we synthesised analogues of interstellar amorphous and crystalline silicate grains, rich in Mg and Ca, and having stiochiometry of olivine and pyroxene and measured their MAC, in the 100-1000/1500 mum range for grain temperatures varying from 300 to 10 K. We find that the grain MAC decreases when the grain temperature decreases and that the local spectral index, beta, defined as the slope of the MAC curve, is anti-correlated with the grain temperature. These variations, which are not observed in the crystallised samples, are related to the amorphous nature of the samples. In addition, the spectral shape of the MAC is complex: at short wavelengths (lambda < 500/700 mum), beta is in the range 1.6 - 2.1 for all grain temperature and grain composition whereas at longer wavelengths (lambda > 500/700 mum), beta < 2 for samples with a pyroxene stoichiometry and beta > 2 for samples with an olivine stoichiometry. Hence, the simplifying asymptotic expression based on a single temperature- and wavelength-independent spectral index used by astronomers is not appropriate to describe the dust MAC and thus the dust emission, and may induce significant errors on the derived parameters such as the dust mass and the dust physical and chemical properties. Instead, dust emission models should use the dust MAC as a function of wavelength and temperature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا