ترغب بنشر مسار تعليمي؟ اضغط هنا

268 - M. Bendele , C. Marini , B. Joseph 2013
The local structure and electronic properties of Rb$_{1-x}$Fe$_{2-y}$Se$_2$ are investigated by means of site selective polarized x-ray absorption spectroscopy at the iron and selenium K-edges as a function of pressure. A combination of dispersive ge ometry and novel nanodiamond anvil pressure-cell has permitted to reveal a step-like decrease in the Fe-Se bond distance at $psimeq11$ GPa. The position of the Fe K-edge pre-peak, which is directly related to the position of the chemical potential, remains nearly constant until $sim6$ GPa, followed by an increase until $psimeq 11$ GPa. Here, as in the local structure, a step-like decrease of the chemical potential is seen. Thus, the present results provide compelling evidence that the origin of the reemerging superconductivity in $A_{1-x}$Fe$_{2-y}$Se$_2$ in vicinity of a quantum critical transition is caused mainly by the changes in the electronic structure.
We address the in-plane pressure-dependent electrodynamics of graphite through synchrotron based infrared spectroscopy and ab initio Density Functional Theory calculations. The Drude term remarkably increases upon pressure application, as a consequen ce of an enhancement of both electron and hole charge densities. This is due to the growth of the band dispersion along the k_z direction between the K and H points of the Brillouin zone. On the other hand, the mid-infrared optical conductivity between 800 and 5000 cm-1 is almost flat, and very weakly pressure dependent, at least up to 7 GPa. This demonstrates a surprising robustness of the graphene-like universal quantum conductance of graphite, even when the interlayer distance is significantly reduced.
We measured the THz reflectance properties of a high quality epitaxial thin film of the Fe-based superconductor BaFe$_{1.84}$Co$_{0.16}$As$_2$ with T$_c$=22.5 K. The film was grown by pulsed laser deposition on a DyScO$_3$ substrate with an epitaxial SrTiO$_3$ intermediate layer. The measured $R_S/R_N$ spectrum, i.e. the reflectivity ratio between the superconducting and normal state reflectance, provides clear evidence of a superconducting gap $Delta_A$ close to 15 cm$^{-1}$. A detailed data analysis shows that a two-band, two-gap model is absolutely necessary to obtain a good description of the measured $R_S/R_N$ spectrum. The low-energy $Delta_A$ gap results to be well determined ($Delta_A$=15.5$pm$0.5 cm$^{-1}$), while the value of the high-energy gap $Delta_B$ is more uncertain ($Delta_B$=55$pm$7 cm$^{-1}$). Our results provide evidence of a nodeless isotropic double-gap scenario, with the presence of two optical gaps corresponding to 2$Delta/kT_c$ values close to 2 and 7.
The metal to insulator transition in the charge transfer NiS{2-x}Se{x} compound has been investigated through infrared reflectivity. Measurements performed by applying pressure to pure NiS2 (lattice contraction) and by Se-alloying (lattice expansion) reveal that in both cases an anomalous metallic state is obtained. We find that optical results are not compatible with the linear Se-alloying vs Pressure scaling relation previously established through transport, thus pointing out the substantially different microscopic origin of the two transitions.
We present new data on the pressure dependence at 300 K of the optical reflectivity of CeTe$_3$, which undergoes a charge-density-wave (CDW) phase transition well above room temperature. The collected data cover an unprecedented broad spectral range from the infrared up to the ultraviolet, which allows a robust determination of the gap as well as of the fraction of the Fermi surface affected by the formation of the CDW condensate. Upon compressing the lattice there is a progressive closing of the gap inducing a transfer of spectral weight from the gap feature into the Drude component. At frequencies above the CDW gap we also identify a power-law behavior, consistent with findings along the $R$Te$_3$ series (i.e., chemical pressure) and suggestive of a Tomonaga-Luttinger liquid scenario at high energy scales. This newest set of data is placed in the context of our previous investigations of this class of materials and allows us to revisit important concepts for the physics of CDW state in layered-like two-dimensional systems.
165 - C. Marini , C. Mirri , G. Profeta 2008
We measured the Raman and the Infrared phonon spectrum of SmFeAsO polycrystalline samples. We also performed Density Functional Theory calculations within the pseudopotential approximation to obtain the structural and dynamical lattice properties of both the SmFeAsO and the prototype LaFeAsO compounds. The measured Raman and Infrared phonon frequencies are well predicted by the optical phonon frequencies computed at the Gamma point, showing the capability of the employed ab-initio methods to describe the dynamical properties of these materials. A comparison among the phonon frequencies of different oxypnictides suggests a possible role of the high frequency phonons in the pairing mechanism leading to superconductivity in these materials.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا