ترغب بنشر مسار تعليمي؟ اضغط هنا

We describe the development of two circularly symmetric antennas with high polarization purity and low spillover. Both were designed to be used in an all-sky polarization and intensity survey at 5 GHz (the C-Band All-Sky Survey, C-BASS). The survey r equirements call for very low levels of cross-polar leakage and far-out sidelobes. Two different existing antennas, with 6.1-m and 7.6-m diameter primaries, were adapted by replacing the feed and secondary optics, resulting in identical beam performances of 0.73deg FWHM, cross-polarization better than -50 dB, and far-out sidelobes below -70 dB. The polarization purity was realized by using a symmetric low-loss dielectric foam support structure for the secondary mirror, avoiding the need for secondary support struts. Ground spill-over was largely reduced by using absorbing baffles around the primary and secondary mirrors, and by the use of a low-sidelobe profiled corrugated feedhorn. The 6.1-m antenna and receiver have been completed and test results show that the optics meet their design goals.
We present the antenna design for a radio interferometer, the Arcminute Microkelvin Imager, together with its beam pattern measurement. Our aim was to develop a low-cost system with high aperture efficiency and low ground-spill across the frequency r ange 12-18GHz. We use a modified cassegrain system consisting of a commercially-available paraboloidal primary mirror with a diameter of 3.7m, and a shaped secondary mirror. The secondary mirror is oversized with respect to a ray-optics design and has a surface that is bent towards the primary near its outer edge using a square term for the shaping. The antennas are simple to manufacture and therefore their cost is low. The design increased the antenna gain by approximately 10 per cent compared to a normal Cassegrain system while still maintaining low contamination from ground-spill and using a simple design for the horn.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا