ترغب بنشر مسار تعليمي؟ اضغط هنا

We have measured the total energy spread (99 persent energy spread) of the Booster beam at its injection energy of 400 MeV by three different methods - 1) creating a notch of about 40 nsec wide in the beam immediately after multiple turn injection an d measuring the slippage time required for high and low momentum particles for a grazing touch in line-charge distribution, 2) injecting partial turn beam and letting it to debunch, and 3) comparing the beam profile monitor data with predictions from MAD simulations for the 400 MeV injection beam line. The measurements are repeated under varieties of conditions of RF systems in the ring and in the beam transfer line.
201 - C. M. Bhat 2015
A new beam injection scheme is proposed for the Fermilab Booster to increase beam brightness. The beam is injected on the deceleration part of the sinusoidal magnetic ramp and capture is started immediately after the injection. During the entire capt ure process we impose Pdot=0 in a changing B field. Beam dynamics simulations clearly show that this method is very efficient with no longitudinal beam emittance dilution and no beam loss. As a consequence of preserved emittance, the required RF power on a typical Booster cycle can be reduced by ~30% as compared with the scheme in current operation. Further, we also propose snap bunch rotation at extraction to reduce dP/P of the beam to improve the slip-stacking efficiency in MI/RR.
129 - C. M. Bhat 2013
Barrier rf buckets have brought about new challenges in longitudinal beam dynamics of charged particle beams in synchrotrons and at the same time led to many new remarkable prospects in beam handling. In this paper, I describe a novel beam stacking s cheme for synchrotrons using barrier buckets without any emittance dilution to the beam. First I discuss the general principle of the method, called longitudinal phase-space coating. Multi-particle beam dynamics simulations of the scheme applied to the Recycler, convincingly validates the concepts and feasibility of the method. Then I demonstrate the technique experimentally in the Recycler and also use it in operation. A spin-off of this scheme is its usefulness in mapping the incoherent synchrotron tune spectrum of the beam particles in barrier buckets and producing a clean hollow beam in longitudinal phase space. Both of which are described here in detail with illustrations. The beam stacking scheme presented here is the first of its kind.
Recent studies have shown that the prospects for significantly increasing bunch intensities in the LHC for the luminosity upgrade (HL-LHC) may be severely limited by the available cryogenic cooling capacity and the electron-cloud (EC) driven beam ins tability. However, it is planned that during the HL-LHC era the bunch intensities in the LHC will go up by nearly a factor of two compared to the LHC-design values. This motivates the exploration of additional EC mitigation techniques that can be adopted in addition to those already in place. Preliminary simulations indicated that long flat bunches can be beneficial over Gaussian bunches to reduce the EC build up. Rigorous studies using realistic bunch profiles have never been done. Therefore, we have undertaken an in-depth investigation in the CERN 26 GeV PS to see if we can validate the previous findings and, in particular, if flattening the bunch can mitigate the EC. Here we present the results from dedicated EC measurements in the PS using a variety of bunch shapes and a comparison with simulations. Finally, we investigate if reshaping the bunch profiles using a 2nd harmonic rf cavity can mitigate EC in the HL-LHC.
263 - C. M. Bhat 2012
The Recycler Ring at Fermilab uses a barrier rf system for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf systems, the longitudinal beam dynamics issues, aspects of rf linearization to prod uce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.
The brightness of the antiproton beam in Fermilabs 8 GeV Recycler ring is limited by a transverse instability. This instability has occurred during the extraction process to the Tevatron for large stacks of antiprotons even with dampers in operation. This paper describes observed features of the instability, introduces the threshold phase density to characterize the beam stability, and finds the results to be in agreement with a resistive wall instability model. Effective exclusion of the longitudinal tails from Landau damping by decreasing the depth of the RF potential well is observed to lower the threshold density by up to a factor of two.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا