ترغب بنشر مسار تعليمي؟ اضغط هنا

We discuss the excitation of polaritons---strongly-coupled states of light and matter---by quantum light, instead of the usual laser or thermal excitation. As one illustration of the new horizons thus opened, we introduce Mollow spectroscopy, a theor etical concept for a spectroscopic technique that consists in scanning the output of resonance fluorescence onto an optical target, from which weak nonlinearities can be read with high precision even in strongly dissipative environments.
We present MUFFIT, a new generic code optimized to retrieve the main stellar population parameters of galaxies in photometric multi-filter surveys, and we check its reliability and feasibility with real galaxy data from the ALHAMBRA survey. Making us e of an error-weighted $chi^2$-test, we compare the multi-filter fluxes of galaxies with the synthetic photometry of mixtures of two single stellar populations at different redshifts and extinctions, to provide through a Monte Carlo method the most likely range of stellar population parameters (mainly ages and metallicities), extinctions, redshifts, and stellar masses. To improve the diagnostic reliability, MUFFIT identifies and removes from the analysis those bands that are significantly affected by emission lines. We highlight that the retrieved age-metallicity locus for a sample of $z le 0.22$ early-type galaxies in ALHAMBRA at different stellar mass bins are in very good agreement with the ones from SDSS spectroscopic diagnostics. Moreover, a one-to-one comparison between the redshifts, ages, metallicities, and stellar masses derived spectroscopically for SDSS and by MUFFIT for ALHAMBRA reveals good qualitative agreements in all the parameters. In addition, and using as input the results from photometric-redshift codes, MUFFIT improves the photometric-redshift accuracy by $sim 10$-$20%$, and it also detects nebular emissions in galaxies, providing physical information about their strengths. Our results show the potential of multi-filter galaxy data to conduct reliable stellar population studies with the appropiate analysis techniques, as MUFFIT.
We present the main steps that will be taken to extract H$alpha$ emission flux from Javalambre Photometric Local Universe Survey (J-PLUS) photometric data. For galaxies with $zlesssim0.015$, the H$alpha$+[NII] emission is covered by the J-PLUS narrow -band filter $F660$. We explore three different methods to extract the H$alpha$ + [NII] flux from J-PLUS photometric data: a combination of a broad-band and a narrow-band filter ($r$ and $F660$), two broad-band and a narrow-band one ($r$, $i$ and $F660$), and a SED-fitting based method using 8 photometric points. To test these methodologies, we simulated J-PLUS data from a sample of 7511 SDSS spectra with measured H$alpha$ flux. Based on the same sample, we derive two empirical relations to correct the derived H$alpha$+[NII] flux from dust extinction and [NII] contamination. We find that the only unbiased method is the SED fitting based one. The combination of two filters underestimates the measurements of the H$alpha$ + [NII] flux by a 28%, while the three filters method by a 9%. We study the error budget of the SED-fitting based method and find that, in addition to the photometric error, our measurements have a systematic uncertainty of a 4.3%. Several sources contribute to this uncertainty: differences between our measurement procedure and the one used to derive the spectroscopic values, the use of simple stellar populations as templates, and the intrinsic errors of the spectra, which were not taken into account. Apart from that, the empirical corrections for dust extinction and [NII] contamination add an extra uncertainty of 14%. Given the J-PLUS photometric system, the best methodology to extract H$alpha$ + [NII] flux is the SED-fitting based one. Using this method, we are able to recover reliable H$alpha$ fluxes for thousands of nearby galaxies in a robust and homogeneous way.
Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so called dropout technique or Ly-alpha selection. However, the availability of multifilter data allows now replacing the dropout selections by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims. Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing in the study of the brightest, less frequent, high redshift galaxies. Methods. The methodology is based on redshift probability distribution functions (zPDFs). It is shown how a clean galaxy sample can be obtained by selecting the galaxies with high integrated probability of being within a given redshift interval. However, reaching both a complete and clean sample with this method is challenging. Hence, a method to derive statistical properties by summing the zPDFs of all the galaxies in the redshift bin of interest is introduced. Results. Using this methodology we derive the galaxy rest frame UV number counts in five redshift bins centred at z=2.5, 3.0, 3.5, 4.0, and 4.5, being complete up to the limiting magnitude at m_UV(AB)=24. With the wide field ALHAMBRA data we especially contribute in the study of the brightest ends of these counts, sampling well the surface densities down to m_UV(AB)=21-22. Conclusions. We show that using the zPDFs it is easy to select a clean sample of high redshift galaxies. We also show that statistical analysis of the properties of galaxies is better done using a probabilistic approach, which takes into account both the incompleteness and contamination in a natural way.
This paper is dedicated to revisit the modifications caused by branes in the collapse of a stellar structure under the Snyder-Oppenheimer scheme. Due to the homogeneity and isotropy of the model, we choose study the case of a closed geometry describe d by $k=1$, through the tool of dynamical systems. We revisit the different components of the star and its evolution during the stellar collapse, paying particular attention to the non-local effects and the quadratic terms of the energy momentum tensor that come from branes corrections. In the same vein we realize a phase portrait together with a stability analysis with the aim of obtain information about the attractors or saddle points of the dynamical system under different initial conditions in the density parameters, remarking the parameters that come from branes contributions.
Our goal is to develop and test a novel methodology to compute accurate close pair fractions with photometric redshifts. We improve the current methodologies to estimate the merger fraction f_m from photometric redshifts by (i) using the full probabi lity distribution functions (PDFs) of the sources in redshift space, (ii) including the variation in the luminosity of the sources with z in both the selection of the samples and in the luminosity ratio constrain, and (iii) splitting individual PDFs into red and blue spectral templates to deal robustly with colour selections. We test the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. The merger fractions and rates from the ALHAMBRA survey are in excellent agreement with those from spectroscopic work, both for the general population and for red and blue galaxies. With the merger rate of bright (M_B <= -20 - 1.1z) galaxies evolving as (1+z)^n, the power-law index n is larger for blue galaxies (n = 2.7 +- 0.5) than for red galaxies (n = 1.3 +- 0.4), confirming previous results. Integrating the merger rate over cosmic time, we find that the average number of mergers per galaxy since z = 1 is N_m = 0.57 +- 0.05 for red galaxies and N_m = 0.26 +- 0.02 for blue galaxies. Our new methodology exploits statistically all the available information provided by photometric redshift codes and provides accurate measurements of the merger fraction by close pairs only using photometric redshifts. Current and future photometric surveys will benefit of this new methodology.
MASSIV (Massiv Assembly Survey with SINFONI in VVDS) is an ESO large program which consists of 84 star-forming galaxies, spanning in a wide range of stellar masses, observed with the IFU SINFONI on the VLT, in the redshift range 1 < z < 2. To be repr esentative of the normal galaxy population, the sample has been selected from a well-defined, complete and representative parent sample. The kinematics of individual galaxies reveals that 58% of the galaxies are slow rotators, which means that a high fraction of these galaxies should probably be formed through major merger processes which might have produced gaseous thick or spheroidal structures supported by velocity dispersion rather than by rotation. Computations on the major merger rate from close pairs indicate that a typical star-forming galaxy underwent ~0.4 major mergers since ~9.5 Gyr, showing that merging is a major process driving mass assembly into the red sequence galaxies. These objects are also intriguing due to the fact that more than one galaxy over four is more metal-rich in its outskirts than in its center.
This paper is based on recent work which provided an exact analytical description of scattering fidelity experiments with a microwave cavity under the variation of an antenna coupling [Kober et al., Phys. Rev. E 82, 036207 (2010)]. It is shown that t his description can also be used to predict the decay of the fidelity amplitude for arbitrary Hermitian perturbations of a closed system. Two applications are presented: First, the known result for global perturbations is re-derived, and second, the exact analytical expression for the perturbation due to a moving S-wave scatterer is worked out. The latter is compared to measured data from microwave experiments, which have been reported some time ago. Finally, we generalize an important relation between fidelity decay and parametric level correlations to arbitrary perturbations.
We aim to measure the major merger rate of star-forming galaxies at 0.9 < z <1.8, using close pairs identified from integral field spectroscopy (IFS). We use the velocity field maps obtained with SINFONI/VLT on the MASSIV sample, selected from the st ar-forming population in the VVDS. We identify physical pairs of galaxies from the measurement of the relative velocity and the projected separation (r_p) of the galaxies in the pair. Using the well constrained selection function of the MASSIV sample we derive the gas-rich major merger fraction (luminosity ratio mu = L_2/L_1 >= 1/4), and, using merger time scales from cosmological simulations, the gas-rich major merger rate at a mean redshift up to z = 1.54. We find a high gas-rich major merger fraction of 20.8+15.2-6.8 %, 20.1+8.0-5.1 % and 22.0+13.7-7.3 % for close pairs with r_p <= 20h^-1 kpc in redshift ranges z = [0.94, 1.06], [1.2, 1.5) and [1.5, 1.8), respectively. This translates into a gas-rich major merger rate of 0.116+0.084-0.038 Gyr^-1, 0.147+0.058-0.037 Gyr^-1 and 0.127+0.079-0.042 Gyr^-1 at z = 1.03, 1.32 and 1.54, respectively. Combining our results with previous studies at z < 1, the gas-rich major merger rate evolves as (1+z)^n, with n = 3.95 +- 0.12, up to z = 1.5. From these results we infer that ~35% of the star-forming galaxies with stellar masses M = 10^10 - 10^10.5 M_Sun have undergone a major merger since z ~ 1.5. We develop a simple model which shows that, assuming that all gas-rich major mergers lead to early-type galaxies, the combined effect of gas-rich and dry mergers is able to explain most of the evolution in the number density of massive early-type galaxies since z ~ 1.5, with our measured gas-rich merger rate accounting for about two-thirds of this evolution.
In this paper we measure the merger fraction and rate, both minor and major, of massive early-type galaxies (M_star >= 10^11 M_Sun) in the COSMOS field, and study their role in mass and size evolution. We use the 30-band photometric catalogue in COSM OS, complemented with the spectroscopy of the zCOSMOS survey, to define close pairs with a separation 10h^-1 kpc <= r_p <= 30h-1 kpc and a relative velocity Delta v <= 500 km s^-1. We measure both major (stellar mass ratio mu = M_star,2/M_star,1 >= 1/4) and minor (1/10 <= mu < 1/4) merger fractions of massive galaxies, and study their dependence on redshift and on morphology. The merger fraction and rate of massive galaxies evolves as a power-law (1+z)^n, with major mergers increasing with redshift, n_MM = 1.4, and minor mergers showing little evolution, n_mm ~ 0. When split by their morphology, the minor merger fraction for early types is higher by a factor of three than that for spirals, and both are nearly constant with redshift. Our results show that massive early-type galaxies have undergone 0.89 mergers (0.43 major and 0.46 minor) since z ~ 1, leading to a mass growth of ~30%. We find that mu >= 1/10 mergers can explain ~55% of the observed size evolution of these galaxies since z ~ 1. Another ~20% is due to the progenitor bias (younger galaxies are more extended) and we estimate that very minor mergers (mu < 1/10) could contribute with an extra ~20%. The remaining ~5% should come from other processes (e.g., adiabatic expansion or observational effects). This picture also reproduces the mass growth and velocity dispersion evolution of these galaxies. We conclude from these results that merging is the main contributor to the size evolution of massive ETGs at z <= 1, accounting for ~50-75% of that evolution in the last 8 Gyr. Nearly half of the evolution due to mergers is related to minor (mu < 1/4) events.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا