ترغب بنشر مسار تعليمي؟ اضغط هنا

Tidal dissipation in planets and stars is one of the key physical mechanisms driving the evolution of star-planet and planet-moon systems. Several signatures of its action are observed in planetary systems thanks to their orbital architecture and the rotational state of their components. Tidal dissipation inside the fluid layers of celestial bodies are intrinsically linked to the dynamics and the physical properties of the latter. This complex dependence must be characterized. We compute the tidal kinetic energy dissipated by viscous friction and thermal diffusion in a rotating local fluid Cartesian section of a star/planet/moon submitted to a periodic tidal forcing. The properties of tidal gravito-inertial waves excited by the perturbation are derived analytically as explicit functions of the tidal frequency and local fluid parameters (i.e. the rotation, the buoyancy frequency characterizing the entropy stratification, viscous and thermal diffusivities) for periodic normal modes. The sensitivity of the resulting possibly highly resonant dissipation frequency-spectra to a control parameter of the system is either important or negligible depending on the position in the regime diagram relevant for planetary and stellar interiors. For corresponding asymptotic behaviors of tidal gravito-inertial waves dissipated by viscous friction and thermal diffusion, scaling laws for the frequencies, number, width, height and contrast with the non-resonant background of resonances are derived to quantify these variations. We characterize the strong impact of the internal physics and dynamics of fluid planetary layers and stars on the dissipation of tidal kinetic energy in their bulk. We point out the key control parameters that really play a role and demonstrate how it is now necessary to develop ab-initio modeling for tidal dissipation in celestial bodies.
Tidal dissipation is known as one of the main drivers of the secular evolution of planetary systems. It directly results from dissipative mechanisms that occur in planets and stars interiors and strongly depends on the structure and dynamics of the b odies. This work focuses on the mechanism of viscous friction in stars and planetary layers. A local model is used to study tidal dissipation. It provides general scaling laws that give a qualitative overview of the different possible behaviors of fluid tidal waves. Furthermore, it highlights the sensitivity of dissipation to the tidal frequency and the roles played by the internal parameters of the fluid such as rotation, stratification, viscosity and thermal diffusivity that will impact the spins/orbital architecture in planetary systems.
Tidal dissipation in stars is one of the key physical mechanisms that drive the evolution of binary and multiple stars. As in the Earth oceans, it corresponds to the resonant excitation of their eigenmodes of oscillation and their damping. Therefore, it strongly depends on the internal structure, rotation, and dissipative mechanisms in each component. In this work, we present a local analytical modeling of tidal gravito-inertial waves excited in stellar convective and radiative regions respectively. This model allows us to understand in details the properties of the resonant tidal dissipation as a function of the excitation frequencies, the rotation, the stratification, and the viscous and thermal properties of the studied fluid regions. Then, the frequencies, height, width at half-height, and number of resonances as well as the non-resonant equilibrium tide are derived analytically in asymptotic regimes that are relevant in stellar interiors. Finally, we demonstrate how viscous dissipation of tidal waves leads to a strongly erratic orbital evolution in the case of a coplanar binary system. We characterize such a non-regular dynamics as a function of the height and width of resonances, which have been previously characterized thanks to our local fluid model.
Context. Tidal dissipation in planets and in stars is one of the key physical mechanisms that drive the evolution of planetary systems. Aims. Tidal dissipation properties are intrisically linked to the internal structure and the rheology of studied celestial bodies. The resulting dependence of the dissipation upon the tidal frequency is strongly different in the cases of solids and fluids. Methods. We compute the tidal evolution of a two-body coplanar system, using the tidal quality factors frequency-dependencies appropriate to rocks and to convective fluids. Results. The ensuing orbital dynamics comes out smooth or strongly erratic, dependent on how the tidal dissipation depends upon frequency. Conclusions. We demonstrate the strong impact of the internal structure and of the rheology of the central body on the orbital evolution of the tidal perturber. A smooth frequency-dependence of the tidal dissipation renders a smooth orbital evolution while a peaked dissipation can furnish erratic orbital behaviour.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا