ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of the frequency dependence of tidal Q on the evolution of planetary systems

133   0   0.0 ( 0 )
 نشر من قبل Christophe Le Poncin-Lafitte
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. Tidal dissipation in planets and in stars is one of the key physical mechanisms that drive the evolution of planetary systems. Aims. Tidal dissipation properties are intrisically linked to the internal structure and the rheology of studied celestial bodies. The resulting dependence of the dissipation upon the tidal frequency is strongly different in the cases of solids and fluids. Methods. We compute the tidal evolution of a two-body coplanar system, using the tidal quality factors frequency-dependencies appropriate to rocks and to convective fluids. Results. The ensuing orbital dynamics comes out smooth or strongly erratic, dependent on how the tidal dissipation depends upon frequency. Conclusions. We demonstrate the strong impact of the internal structure and of the rheology of the central body on the orbital evolution of the tidal perturber. A smooth frequency-dependence of the tidal dissipation renders a smooth orbital evolution while a peaked dissipation can furnish erratic orbital behaviour.


قيم البحث

اقرأ أيضاً

95 - Alwyn Wootten 2009
Stars and planets are the fundamental objects of the Universe. Their formation processes, though related, may differ in important ways. Stars almost certainly form from gravitational collapse and probably have formed this way since the first stars li t the skies. Although it is possible that planets form in this way also, processes involving accretion in a circumstellar disk have been favored. High fidelity high resolution images may resolve the question; both processes may occur in some mass ranges. The questions to be answered in the next decade include: By what process do planets form, and how does the mode of formation determine the character of planetary systems? What is the distribution of masses of planets? In what manner does the metallicity of the parent star influence the character of its planetary system? In this paper we discuss the observations of planetary systems from birth to maturity, with an emphasis on observations longward of 100 $mu$m which may illuminate the character of their formation and evolution. Advantages of this spectral region include lower opacity, availability of extremely high resolution to reach planet formation scales and to perform precision astrometry and high sensitivity to thermal emission.
It has recently been shown that stellar clustering plays an important role in shaping the properties of planetary systems. We investigate how the multiplicity distributions and orbital periods of planetary systems depend on the 6D phase space density of stars surrounding planet host systems. We find that stars in high stellar phase space density environments (overdensities) have a factor 1.6 - 2.0 excess in the number of single planet systems compared to stars in low stellar phase space density environments (the field). The multiplicity distribution of planets around field stars is much flatter (i.e. there is a greater fraction of multi-planet systems) than in overdensities. This result is primarily driven by the combined facts that: (i) `hot Jupiters (HJs) are almost exclusively found in overdensities; (ii) HJs are predominantly observed to be single-planet systems. Nevertheless, we find that the difference in multiplicity is even more pronounced when only considering planets in the Kepler sample, which contains few HJs. This suggests that the Kepler dichotomy -- an apparent excess of systems with a single transiting planet -- plausibly arises from environmental perturbations. In overdensities, the orbital periods of single-planet systems are smaller than orbital periods of multiple-planet systems. As this difference is more pronounced in overdensities, the mechanism responsible for this effect may be enhanced by stellar clustering. Taken together, the pronounced dependence of planetary multiplicity and orbital period distributions on stellar clustering provides a potentially powerful tool to diagnose the impact of environment on the formation and evolution of planetary systems.
285 - Adam L. Kraus 2016
The dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of 382 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry (NRM) on the Keck-II telescope. Among the full sample of 506 candidate binary companions to KOIs, we super-resolve some binary systems to projected separations of <5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. For a field binary population, we should have found 58 binary companions with projected separation rho < 50 AU and mass ratio q > 0.4; we instead only found 23 companions (a 4.6 sigma deficit), many of which must be wider pairs that are only close in projection. When the binary population is parametrized with a semimajor axis cutoff a_cut and a suppression factor inside that cutoff S_bin, we find with correlated uncertainties that inside a_cut = 47 +59/-23 AU, the planet occurrence rate in binary systems is only S_bin = 0.34 +0.14/-0.15 times that of wider binaries or single stars. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion.
78 - E. Pacetti , A. Balbi , M. Lingam 2020
Tidal Disruption Events (TDEs) are characterized by the emission of a short burst of high-energy radiation. We analyze the cumulative impact of TDEs on galactic habitability using the Milky Way as a proxy. We show that X-rays and extreme ultraviolet (XUV) radiation emitted during TDEs can cause hydrodynamic escape and instigate biological damage. By taking the appropriate variables into consideration, such as the efficiency of atmospheric escape and distance from the Galactic center, we demonstrate that the impact of TDEs on galactic habitability is comparable to that of Active Galactic Nuclei. In particular, we show that planets within distances of $sim 0.1$-$1$ kpc could lose Earth-like atmospheres over the age of the Earth, and that some of them might be subject to biological damage once every $gtrsim 10^4$ yrs. We conclude by highlighting potential ramifications of TDEs and argue that they should be factored into future analyses of inner galactic habitability.
Mineralogical studies of silicate features emitted by dust grains in protoplanetary disks and Solar System bodies can shed light on the progress of planet formation. The significant fraction of crystalline material in comets, chondritic meteorites an d interplanetary dust particles indicates a modification of the almost completely amorphous ISM dust from which they formed. The production of crystalline silicates thus must happen in protoplanetary disks, where dust evolves to build planets and planetesimals. Different scenarios have been proposed, but it is still unclear how and when this happens. This paper presents dust grain mineralogy of a complete sample of protoplanetary disks in the young Serpens cluster. These results are compared to those in the young Taurus region and to sources that have retained their protoplanetary disks in the older Upper Scorpius and Eta Chamaeleontis stellar clusters, using the same analysis technique for all samples. This comparison allows an investigation of the grain mineralogy evolution with time for a total sample of 139 disks. The mean cluster age and disk fraction are used as indicators of the evolutionary stage of the different populations. Our results show that the disks in the different regions have similar distributions of mean grain sizes and crystallinity fractions (~10-20%) despite the spread in mean ages. Furthermore, there is no evidence of preferential grain sizes for any given disk geometry, nor for the mean cluster crystallinity fraction to increase with mean age in the 1-8 Myr range. The main implication is that a modest level of crystallinity is established in the disk surface early on (< 1 Myr), reaching a equilibrium that is independent of what may be happening in the disk midplane. These results are discussed in the context of planet formation, in comparison with mineralogical results from small bodies in our Solar System. [Abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا