ترغب بنشر مسار تعليمي؟ اضغط هنا

197 - C. J. Law 2011
We demonstrate a signal processing concept for imaging the sky at millisecond rates with radio interferometers. The Pocket Correlator (PoCo) correlates the signals from multiple elements of a radio interferometer fast enough to image brief, dispersed pulses. By the nature of interferometry, a millisecond correlator functions like a large, single-dish telescope, but with improved survey speed, spatial localization, calibration, and interference rejection. To test the concept, we installed PoCo at the Allen Telescope Array (ATA) to search for dispersed pulses from the Crab pulsar, B0329+54, and M31 using total-power, visibility-based, and image-plane techniques. In 1.7 hours of observing, PoCo detected 191 giant pulses from the Crab pulsar brighter than a typical 5 sigma sensitivity limit of 60 Jy over pulse widths of 3 milliseconds. Roughly 40% of pulses from pulsar B0329+54 were detected by using novel visibility-based techniques. Observations of M31 constrain the rate of pulses brighter than 190 Jy in a three degree region surrounding the galaxy to <4.3/hr. We calculate the computational demand of various visibility-based pulse search algorithms and demonstrate how compute clusters can help meet this demand. Larger implementations of the fast imaging concept will conduct blind searches for millisecond pulses in our Galaxy and beyond, providing a valuable probe of the interstellar/intergalactic media, discovering new kinds of radio transients, and localizing them to constrain models of their origin.
62 - C. J. Law , 2011
We present new 6 and 20 cm Very Large Array (VLA) observations of polarized continuum emission of roughly 0.5 square degrees of the Galactic center (GC) region. The 6 cm observations detect diffuse linearly-polarized emission throughout the region wi th a brightness of roughly 1 mJy per 15x10 beam. The Faraday rotation measure (RM) toward this polarized emission has structure on degree size scales and ranges from roughly +330 rad/m2 east of the dynamical center (Sgr A) to -880 rad/m2 west of the dynamical center. This RM structure is also seen toward several nonthermal radio filaments, which implies that they have a similar magnetic field orientation and constrains models for their origin. Modeling shows that the RM and its change with Galactic longitude are best explained by the high electron density and strong magnetic field of the GC region. Considering the emissivity of the GC plasma shows that while the absolute RM values are indirect measures of the GC magnetic field, the RM longitude structure directly traces the magnetic field in the central kiloparsec of the Galaxy. Combining this result with previous work reveals a larger RM structure covering the central ~2 degrees of the Galaxy. This RM structure is similar to that proposed by Novak and coworkers, but is shifted roughly 50 pc west of the dynamical center of the Galaxy. If this RM structure originates in the GC region, it shows that the GC magnetic field is organized on ~300 pc size scales. The pattern is consistent with a predominantly poloidal field geometry, pointing from south to north, that is perturbed by the motion of gas in the Galactic disk.
146 - C. J. Law 2009
The Galactic Center lobe is a degree-tall shell seen in radio continuum images of the Galactic center (GC) region. If it is actually located in the GC region, formation models would require massive energy input (e.g., starburst or jet) to create it. At present, observations have not strongly constrained the location or physical conditions of the GC lobe. This paper describes the analysis of new and archival single-dish observations of radio recombination lines toward this enigmatic object. The observations find that the ionized gas has a morphology similar to the radio continuum emission, suggesting that they are associated. We study averages of several transitions from H106alpha to H191epsilon and find that the line ratios are most consistent with gas in local thermodynamic equilibrium. The radio recombination line widths are remarkably narrow, constraining the typical electron temperature to be less than about 4000 K. These observations also find evidence of pressure broadening in the higher electronic states, implying a gas density of n_e=910^{+310}_{-450} cm^{-3}. The electron temperature, gas pressure, and morphology are all consistent with the idea that the GC lobe is located in the GC region. If so, the ionized gas appears to form a shell surrounding the central 100 parsecs of the galaxy with a mass of roughly 10^5 Msun, similar to ionized outflows seen in dwarf starbursts.
105 - C. J. Law 2008
We describe the results of a mJy-sensitivity, VLA survey of roughly 1 square degree near the Galactic center at 6 and 20 cm. Catalogs of compact and filamentary structures are given and compared to previous surveys of the region. Eight of the unusual , nonthermal radio filaments are detected in 6 cm polarized emission; three of these are the first such detections, confirming their nonthermal nature. This survey found emission from a filament at (l,b)=(359.1,0.75), or a projected distance from Sgr A* of 200 pc, greatly extending the latitude range observed with such features. There is also new evidence for spatial gradients in the 6/20 cm spectral indices of some filaments and we discuss models for these gradients. In studying compact sources, the combination of spectral index and polarization information allows us to identify pulsar candidates and compact HII regions in the survey. There is also some evidence that the flux measurements of compact sources may be affected by electron scattering from the interstellar medium in the cent ral few hundred parsecs of the Galaxy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا