ﻻ يوجد ملخص باللغة العربية
The Galactic Center lobe is a degree-tall shell seen in radio continuum images of the Galactic center (GC) region. If it is actually located in the GC region, formation models would require massive energy input (e.g., starburst or jet) to create it. At present, observations have not strongly constrained the location or physical conditions of the GC lobe. This paper describes the analysis of new and archival single-dish observations of radio recombination lines toward this enigmatic object. The observations find that the ionized gas has a morphology similar to the radio continuum emission, suggesting that they are associated. We study averages of several transitions from H106alpha to H191epsilon and find that the line ratios are most consistent with gas in local thermodynamic equilibrium. The radio recombination line widths are remarkably narrow, constraining the typical electron temperature to be less than about 4000 K. These observations also find evidence of pressure broadening in the higher electronic states, implying a gas density of n_e=910^{+310}_{-450} cm^{-3}. The electron temperature, gas pressure, and morphology are all consistent with the idea that the GC lobe is located in the GC region. If so, the ionized gas appears to form a shell surrounding the central 100 parsecs of the galaxy with a mass of roughly 10^5 Msun, similar to ionized outflows seen in dwarf starbursts.
We present a Radio Recombination Line (RRL) survey of the Galactic Plane from the HI Parkes All-sky Survey and associated Zone of Avoidance survey, which mapped the region l=196degr -- 0degr --52degr and |b| < 5degr at 1.4 GHz and 14.4 arcmin resolut
An observational result of a radio continuum and H92$alpha$ radio recombination line of the Galactic Center Lobe (GCL), using the Yamaguchi 32 m radio telescope, is reported. The obtained spatial intensity distribution of the radio recombination line
The Galactic Center Lobe (GCL) is a peculiar object widely protruding from the Galactic plane toward the positive Galactic latitude, which had been found toward the Galactic Center (GC) in the early days of the radio observation. The peculiar shape h
We have used the Wide Field Spectrograph on the Australian National University 2.3-m telescope to perform the integral field spectroscopy for a sample of the Galactic planetary nebulae. The spatially resolved velocity distributions of the H$alpha$ em
We explore the possibility of detecting hydrogen radio recombination lines from 0 < z < 10 quasars. We compute the expected Hnalpha flux densities as a function of absolute magnitude and redshift by considering (i) the range of observed AGN spectral