ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce a new measure for the genuinely N-partite (all-party) entanglement of N-qubit states using the trace distance metric, and find an algebraic formula for the GHZ-diagonal states. We then use this formula to show how the all-party entanglem ent of experimentally produced GHZ states of an arbitrary number of qubits may be bounded with only four measurements.
We find an algebraic formula for the N-partite concurrence of N qubits in an X-matrix. X- matricies are density matrices whose only non-zero elements are diagonal or anti-diagonal when written in an orthonormal basis. We use our formula to study the dynamics of the N-partite entanglement of N remote qubits in generalized N-party Greenberger-Horne-Zeilinger (GHZ) states. We study the case when each qubit interacts with a partner harmonic oscillator. It is shown that only one type of GHZ state is prone to entanglement sudden death; for the rest, N-partite entanglement dies out momentarily. Algebraic formulas for the entanglement dynamics are given in both cases.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا