ترغب بنشر مسار تعليمي؟ اضغط هنا

The realization of artificial gauge fields and spin-orbit coupling for ultra-cold quantum gases promises new insight into paradigm solid state systems. Here we experimentally probe the dispersion relation of a spin-orbit coupled Bose-Einstein condens ate loaded into a translating optical lattice by observing its dynamical stability, and develop an effective band structure that provides a theoretical understanding of the locations of the band edges. This system presents exciting new opportunities for engineering condensed-matter analogs using the flexible toolbox of ultra-cold quantum gases.
We experimentally investigate the phase winding dynamics of a harmonically trapped two-component BEC subject to microwave induced Rabi oscillations between two pseudospin components. While the single particle dynamics can be explained by mapping the system to a two-component Bose-Hubbard model, nonlinearities due to the interatomic repulsion lead to new effects observed in the experiments: In the presence of a linear magnetic field gradient, a qualitatively stable moving magnetic order that is similar to antiferromagnetic order is observed after critical winding is achieved. We also demonstrate how the phase winding can be used as a new tool to generate copious dark-bright solitons in a two-component BEC, opening the door for new experimental studies of these nonlinear features.
237 - D. Yan , J.J. Chang , C. Hamner 2011
We present experimental results and a systematic theoretical analysis of dark-br ight soliton interactions and multiple-dark-bright soliton complexes in atomic t wo-component Bose-Einstein condensates. We study analytically the interactions b etween two-dark-bright solitons in a homogeneous condensate and, then, extend ou r considerations to the presence of the trap. An effective equation of motion is derived for the dark-bright soliton center and the existence and stability of stationary two-dark-bright soliton states is illustrated (with the bright components being either in- or out-of-phase). The equation of motion provides the characteristic oscillation frequencies of the solitons, in good agreement with the eigenfrequencies of the anomalous modes of the system.
The dynamics of two penetrating superfluids exhibit an intriguing variety of nonlinear effects. Using two distinguishable components of a Bose-Einstein condensate, we investigate the counterflow of two superfluids in a narrow channel. We present the first experimental observation of trains of dark-bright solitons generated by the counterflow. Our observations are theoretically interpreted by three-dimensional numerical simulations for the coupled Gross-Pitaevskii (GP) equations and the analysis of a jump in the two relatively flowing components densities. Counterflow induced modulational instability for this miscible system is identified as the central process in the dynamics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا