ترغب بنشر مسار تعليمي؟ اضغط هنا

44 - C. Guidorzi 2015
We present a novel algorithm aimed at identifying peaks within a uniformly sampled time series affected by uncorrelated Gaussian noise. The algorithm, called MEPSA (multiple excess peak search algorithm), essentially scans the time series at differen t timescales by comparing a given peak candidate with a variable number of adjacent bins. While this has originally been conceived for the analysis of gamma-ray burst light (GRB) curves, its usage can be readily extended to other astrophysical transient phenomena, whose activity is recorded through different surveys. We tested and validated it through simulated featureless profiles as well as simulated GRB time profiles. We showcase the algorithms potential by comparing with the popular algorithm by Li and Fenimore, that is frequently adopted in the literature. Thanks to its high flexibility, the mask of excess patterns used by MEPSA can be tailored and optimised to the kind of data to be analysed without modifying the code. The C code is made publicly available.
A sizeable fraction of gamma-ray burst (GRB) time profiles consist of a temporal sequence of pulses. The nature of this stochastic process carries information on how GRB inner engines work. The so-called interpulse time defines the interval between a djacent pulses, excluding the long quiescence periods during which the signal drops to the background level. It was found by many authors in the past that interpulse times are lognormally distributed, at variance with the exponential case that is expected for a memoryless process. We investigated whether the simple hypothesis of a temporally uncorrelated sequence of pulses is really to be rejected, as a lognormal distribution necessarily implies. We selected and analysed a number of multi--peaked CGRO/BATSE GRBs and simulated similar time profiles, with the crucial difference that we assumed exponentially distributed interpulse times, as is expected for a memoryless stationary Poisson process. We then identified peaks in both data sets using a novel peak search algorithm, which is more efficient than others used in the past. We independently confirmed that the observed interpulse time distribution is approximately lognormal. However, we found the same results on the simulated profiles, in spite of the intrinsic exponential distribution. Although intrinsic lognormality cannot be ruled out, this shows that intrinsic interpulse time distribution in real data could still be exponential, while the observed lognormal could be ascribed to the low efficiency of peak search algorithms at short values combined with the limitations of a bin-integrated profile. Our result suggests that GRB engines may emit pulses after the fashion of nuclear radioactive decay, that is, as a memoryless process.
70 - P. Romano 2014
The duty cycle (DC) of astrophysical sources is generally defined as the fraction of time during which the sources are active. However, DCs are generally not provided with statistical uncertainties, since the standard approach is to perform Monte Car lo bootstrap simulations to evaluate them, which can be quite time consuming for a large sample of sources. As an alternative, considerably less time-consuming approach, we derived the theoretical expectation value for the DC and its error for sources whose state is one of two possible, mutually exclusive states, inactive (off) or flaring (on), as based on a finite set of independent observational data points. Following a Bayesian approach, we derived the analytical expression for the posterior, the conjugated distribution adopted as prior, and the expectation value and variance. We applied our method to the specific case of the inactivity duty cycle (IDC) for supergiant fast X-ray transients. We also studied IDC as a function of the number of observations in the sample. Finally, we compare the results with the theoretical expectations. We found excellent agreement with our findings based on the standard bootstrap method. Our Bayesian treatment can be applied to all sets of independent observations of two-state sources, such as active galactic nuclei, X-ray binaries, etc. In addition to being far less time consuming than bootstrap methods, the additional strength of this approach becomes obvious when considering a well-populated class of sources ($N_{rm src} geq 50$) for which the prior can be fully characterized by fitting the distribution of the observed DCs for all sources in the class, so that, through the prior, one can further constrain the DC of a new source by exploiting the information acquired on the DC distribution derived from the other sources. [Abridged]
We study the late-time (t>0.5 days) X-ray afterglows of nearby (z<0.5) long Gamma-Ray Bursts (GRB) with Swift and identify a population of explosions with slowly decaying, super-soft (photon index Gamma_x>3) X-ray emission that is inconsistent with f orward shock synchrotron radiation associated with the afterglow. These explosions also show larger-than-average intrinsic absorption (NH_x,i >6d21 cm-2) and prompt gamma-ray emission with extremely long duration (T_90>1000 s). Chance association of these three rare properties (i.e. large NH_x,i, super-soft Gamma_x and extreme duration) in the same class of explosions is statistically unlikely. We associate these properties with the turbulent mass-loss history of the progenitor star that enriched and shaped the circum-burst medium. We identify a natural connection between NH_x,i Gamma_x and T_90 in these sources by suggesting that the late-time super-soft X-rays originate from radiation reprocessed by material lost to the environment by the stellar progenitor before exploding, (either in the form of a dust echo or as reprocessed radiation from a long-lived GRB remnant), and that the interaction of the explosions shock/jet with the complex medium is the source of the extremely long prompt emission. However, current observations do not allow us to exclude the possibility that super-soft X-ray emitters originate from peculiar stellar progenitors with large radii that only form in very dusty environments.
The long ${it Swift}$ gamma-ray burst GRB 120326A at redshift $z=1.798$ exhibited a multi-band light curve with a striking feature: a late-time, long-lasting achromatic rebrightening, rarely seen in such events. Peaking in optical and X-ray bands $si m 35$ ks ($sim 12.5$ ks in the GRB rest frame) after the 70-s GRB prompt burst, the feature brightens nearly two orders of magnitude above the underlying optical power-law decay. Modelling the multiwavelength light curves, we investigate possible causes of the rebrightening in the context of the standard fireball model. We exclude a range of scenarios for the origin of this feature: reverse-shock flash, late-time forward shock peak due to the passage of the maximal synchrotron frequency through the optical band, late central engine optical/X-ray flares, interaction between the expanding blast wave and a density enhancement in the circumburst medium and gravitational microlensing. Instead we conclude that the achromatic rebrightening may be caused by a refreshed forward shock or a geometrical effect. In addition, we identify an additional component after the end of the prompt emission, that shapes the observed X-ray and optical light curves differently, ruling out a single overall emission component to explain the observed early time emission.
We use high--quality, multi-band observations of Swift GRB120404A, from gamma-ray to radio frequencies, together with the new hydrodynamics code of van Eerten et al. (2012) to test the standard synchrotron shock model. The evolution of the radio and optical afterglow, with its prominent optical rebrightening at t_rest 260-2600 s, is remarkably well modelled by a decelerating jet viewed close to the jet edge, combined with some early re-energization of the shock. We thus constrain the geometry of the jet with half-opening and viewing angles of 23 and 21 deg respectively and suggest that wide jets viewed off-axis are more common in GRBs than previously thought. We also derive the fireball microphysics parameters epsilon_B=2.4e-4 and epsilon_e=9.3e-2 and a circumburst density of n=240 cm^-3. The ability to self-consistently model the microphysics parameters and jet geometry in this way offers an alternative to trying to identify elusive canonical jet breaks at late times. The mismatch between the observed and model-predicted X-ray fluxes is explained by the local rather than the global cooling approximation in the synchrotron radiation model, constraining the microphysics of particle acceleration taking place in a relativistic shock and, in turn, emphasising the need for a more realistic treatment of cooling in future developments of theoretical models. Finally, our interpretation of the optical peak as due to the passage of the forward shock synchrotron frequency highlights the importance of high quality multi-band data to prevent some optical peaks from being erroneously attributed to the onset of fireball deceleration.
We searched for periodic and quasiperiodic signal in the prompt emission of a sample of 44 bright short gamma-ray bursts detected with Fermi/GBM, Swift/BAT, and CGRO/BATSE. The aim was to look for the observational signature of quasiperiodic jet prec ession which is expected from black hole-neutron star mergers, but not from double neutron star systems. Thus, this kind of search holds the key to identify the progenitor systems of short GRBs and, in the wait for gravitational wave detection, represents the only direct way to constrain the progenitors. We tailored our search to the nature of the expected signal by properly stretching the observed light curves by an increasing factor with time, after calibrating the technique on synthetic curves. In none of the GRBs of our sample we found evidence for periodic or quasiperiodic signals. In particular, for the 7 unambiguously short GRBs with best S/N we obtained significant upper limits to the amplitude of the possible oscillations. This result suggests that BH-NS systems do not dominate the population of short GRB progenitors as described by the kinematic model of Stone, Loeb, & Berger (2013).
104 - S. Dichiara 2013
From past experiments the average power density spectrum (PDS) of GRBs with unknown redshift was found to be modelled from 0.01 to 1 Hz with a power-law, f^(-alpha), with alpha broadly consistent with 5/3. Recent analyses of the Swift/BAT catalogue s howed analogous results in the 15-150 keV band. We carried out the same analysis on the bright GRBs detected by BeppoSAX/GRBM and Fermi/GBM. The BeppoSAX/GRBM data, in the energy range 40-700 keV and with 7.8 and 0.5-ms time resolutions, allowed us to explore for the first time the average PDS at very high frequencies (up to 1 kHz) and reveal a break around 1-2 Hz, previously found in CGRO/BATSE data. The Fermi/GBM data, in the energy band 8-1000 keV, allowed us to explore for the first time the average PDS within a broad energy range. Our results confirm and extend the energy dependence of the PDS slope, according to which harder photons have shallower PDS.
The multi-purpose INTEGRAL mission is continuously contributing to Gamma Ray Burst (GRB) science, thanks to the performances of its two main instruments, IBIS and SPI, operating in the hard X-ray/soft gamma-ray domain. We investigate the possibilitie s offered to the study of GRBs by PICsIT, the high-energy detector of the IBIS instrument. We searched for transient episodes in the PICsIT light curves archive from May 2006 to August 2009, using stringent criteria optimized for the detection of long events. In the time interval under examination PICsIT provides an energy coverage from 208 to 2600 keV, resolved in eight energy channels, combined with a fine time resolution of 16 ms. PICsIT successfully observes GRBs in the 260-2600 keV energy range with an incoming direction spread over half the sky for the brightest events. We compiled a list of 39 bursts, most of which are confirmed GRBs or simultaneous to triggers from other satellites/instruments. We produced light curves with a time sampling down to 0.25 s in three energy intervals for all events. Because an adequate response matrix is not yet available for the PICsIT burst sample, we obtained a calibration coefficient in three selected energy bands by comparing instrumental counts with physical fluences inferred from observations with different satellites. The good time resolution provided by the PICsIT data allows a spectral variability study of our sample through the hardness ratio.
We report the detection of a faint optical flash by the 2-m Faulkes Telescope North simultaneously with the second of two prompt gamma-ray pulses in INTEGRAL gamma-ray burst (GRB) 080603A, beginning at t_rest = 37 s after the onset of the GRB. This o ptical flash appears to be distinct from the subsequent emerging afterglow emission, for which we present comprehensive broadband radio to X-ray light curves to 13 days post-burst and rigorously test the standard fireball model. The intrinsic extinction toward GRB 080603A is high (A_V,z = 0.8 mag), and the well-sampled X-ray-to-near-infrared spectral energy distribution is interesting in requiring an LMC2 extinction profile, in contrast to the majority of GRBs. Comparison of the gamma-ray and extinction-corrected optical flux densities of the flash rules out an inverse-Compton origin for the prompt gamma-rays; instead, we suggest that the optical flash could originate from the inhomogeneity of the relativistic flow. In this scenario, a large velocity irregularity in the flow produces the prompt gamma-rays, followed by a milder internal shock at a larger radius that would cause the optical flash. Flat gamma-ray spectra, roughly F propto nu^-0.1, are observed in many GRBs. If the flat spectrum extends down to the optical band in GRB 080603A, the optical flare could be explained as the low-energy tail of the gamma-ray emission. If this is indeed the case, it provides an important clue to understanding the nature of the emission process in the prompt phase of GRBs and highlights the importance of deep (R> 20 mag), rapid follow-up observations capable of detecting faint, prompt optical emission.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا