ترغب بنشر مسار تعليمي؟ اضغط هنا

The CeIn3-xSnx cubic heavy fermion system presents an antiferromagnetic transition at T_N = 10 K, for x = 0, that decreases continuously down to 0 K upon Sn substitution at a critical concentration of x_c ~ 0.65. In the vicinity of T_N -> 0 the syste m shows non-Fermi liquid behavior due to antiferromagnetic critical fluctuations. For a high Sn content, x > 2.2, intermediate valence effects are present. In this work we show that Gd3+-doped electron spin resonance (ESR) probes a change in the character of the Ce 4f electron, as a function of Sn substitution. The Gd3+ ESR results indicate a transition of the Ce 4f spin behavior from localized to itinerant. Near the quantum critical point, on the antiferromagnetic side of the magnetic phase diagram, both localized and itinerant behaviors coexist.
The LaIn3-xSnx alloy system is composed of superconducting Pauli paramagnets. For LaIn3 the superconducting critical temperature T_c is approximately 0.7 K and it shows an oscillatory dependence as a function of Sn substitution, presenting its highes t value T_c ~ 6.4 K for the LaSn3 end member. The superconducting state of these materials was characterized as being of the conventional type. We report our results for Gd3+ electron spin resonance (ESR) measurements in the LaIn3-xSnx compounds as a function of x. We show that the effective exchange interaction parameter J_fs between the Gd3+ 4f local moment and the s-like conduction electrons is almost unchanged by Sn substitution and observe microscopically that LaSn3 is a conventional superconductor.
Low temperature magnetic properties of Cd-doped Ce2MIn8 (M = Rh and Ir) single crystals are investigated. Experiments of temperature dependent magnetic susceptibility, heat capacity and electrical resistivity measurements revealed that Cd-doping enha nces the antiferromagnetic (AFM) ordering temperature from TN = 2.8 K (x = 0) to TN = 4.8 K (x = 0.21) for Ce2RhIn8-xCdx and induces long range AFM ordering with TN = 3.8 K (x = 0.21) for Ce2IrIn8-xCdx. Additionally, X-ray and neutron magnetic scattering studies showed that Cd-doped samples present below TN a commensurate antiferromagnetic structure with a propagation vector (1/2,1/2,0). The resolved magnetic structures for both compounds indicate that the Cd-doping tends to rotate the direction of the ordered magnetic moments toward the ab-plane. This result suggests that the Cd-doping affects the Ce3+ ground state single ion anisotropy modifying the crystalline electrical field (CEF) parameters at the Ce3+ site. Indications of CEF evolution induced by Cd-doping were also found in the electrical resistivity measurements. Comparisons between our results and the general effects of Cd-doping on the related compounds CeMIn5 (M = Co, Rh and Ir) confirms the claims that the Cd-doping induced electronic tuning is the main effect favoring AFM ordering in these compounds.
The magnetic structure of the intermetallic antiferromagnet Sm2IrIn8 was determined using x-ray resonant magnetic scattering (XRMS). Below TN = 14.2, Sm2IrIn8 has a commensurate antiferromagnetic structure with a propagation vector (1/2,0,0). The Sm magnetic moments lie in the ab plane and are rotated roughly 18 degrees away from the a axis. The magnetic structure of this compound was obtained by measuring the strong dipolar resonant peak whose enhancement was of over two orders of magnitude at the L2 edge. At the L3 edge both quadrupolar and dipolar features were observed in the energy line shape. The magnetic structure and properties of Sm2IrIn8 are found to be consistent with the general trend already seen for the Nd-, Tb- and the Ce-based compounds from the RmMnIn3m+2n family (R = rare earth; M=Rh or Ir, m = 1, 2; n = 0, 1), where the crystalline electrical field (CEF) effects determine the direction of magnetic moments and the TN evolution in the series. The measured Neel temperature for Sm2IrIn8 is slightly suppressed when compared to the TN of the parent cubic compound SmIn3.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا