ترغب بنشر مسار تعليمي؟ اضغط هنا

112 - C. F. Hermanns 2013
Graphene is expected to complement todays Si-based information technology. In particular, magnetic molecules in contact with graphene constitute a tantalizing approach towards organic spin electronics because of the reduced conductivity mismatch at t he interface. In such a system a bit is represented by a single molecular magnetic moment, which must be stabilized against thermal fluctuations. Here, we show in a combined experimental and theoretical study that the moments of paramagnetic Co-octaethylporphyrin (CoOEP) molecules on graphene can be aligned by a remarkable antiferromagnetic coupling to a Ni substrate underneath the graphene. This coupling is mediated via the pi electronic system of graphene, while no covalent bonds between the molecule and the substrate are established.
The magnetic state and magnetic coupling of individual atoms in nanoscale structures relies on a delicate balance between different interactions with the atomic-scale surrounding. Using scanning tunneling microscopy, we resolve the self-assembled for mation of highly ordered bilayer structures of Fe atoms and organic linker molecules (T4PT) when deposited on a Au(111) surface. The Fe atoms are encaged in a three-dimensional coordination motif by three T4PT molecules in the surface plane and an additional T4PT unit on top. Within this crystal field, the Fe atoms retain a magnetic ground state with easy-axis anisotropy, as evidenced by X-ray absorption spectroscopy and X-ray magnetic circular dichroism. The magnetization curves reveal the existence of ferromagnetic coupling between the Fe centers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا