ترغب بنشر مسار تعليمي؟ اضغط هنا

(abridged) Infrared excesses associated with debris disk host stars detected so far peak at wavelengths around ~100{mu}m or shorter. However, six out of 31 excess sources in the Herschel OTKP DUNES have been seen to show significant - and in some cas es extended - excess emission at 160{mu}m, which is larger than the 100{mu}m excess. This excess emission has been suggested to stem from debris disks colder than those known previously. Using several methods, we re-consider whether some or even all of the candidates may be associated with unrelated galactic or extragalactic emission and conclude that it is highly unlikely that none of the candidates represents a true circumstellar disk. For true disks, both the dust temperatures inferred from the SEDs and the disk radii estimated from the images suggest that the dust is nearly as cold as a blackbody. This requires the grains to be larger than ~100{mu}m, regardless of their material composition. To explain the dearth of small grains, we explore several conceivable scenarios: transport-dominated disks, disks of low dynamical excitation, and disks of unstirred primordial macroscopic grains. Our qualitative analysis and collisional simulations rule out the first two of these scenarios, but show the feasibility of the third one. We show that such disks can survive for gigayears, largely preserving the primordial size distribution. They should be composed of macroscopic solids larger than millimeters, but smaller than kilometers in size. Thus planetesimal formation, at least in the outer regions of the systems, has stopped before cometary or asteroidal sizes were reached.
Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar systems counterparts are the asteroid and Edgeworth-Kuiper belts. The DUNES survey aims at detecting extra-solar analo gues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. The survey allows us to address some questions related to the prevalence and properties of planetesimal systems. We used {it Herschel}/PACS to observe a sample of nearby FGK stars. Data at 100 and 160 $mu$m were obtained, complemented in some cases with observations at 70 $mu$m, and at 250, 350 and 500 $mu$m using SPIRE. The observing strategy was to integrate as deep as possible at 100 $mu$m to detect the stellar photosphere. Debris discs have been detected at a fractional luminosity level down to several times that of the Edgeworth-Kuiper belt. The incidence rate of discs around the DUNES stars is increased from a rate of $sim$ 12.1% $pm$ 5% before emph{Herschel} to $sim$ 20.2% $pm$ 2%. A significant fraction ($sim$ 52%) of the discs are resolved, which represents an enormous step ahead from the previously known resolved discs. Some stars are associated with faint far-IR excesses attributed to a new class of cold discs. Although it cannot be excluded that these excesses are produced by coincidental alignment of background galaxies, statistical arguments suggest that at least some of them are true debris discs. Some discs display peculiar SEDs with spectral indexes in the 70-160$mu$m range steeper than the Rayleigh-Jeans one. An analysis of the debris disc parameters suggests that a decrease might exist of the mean black body radius from the F-type to the K-type stars. In addition, a weak trend is suggested for a correlation of disc sizes and an anticorrelation of disc temperatures with the stellar age.
We present Herschel PACS 100 and 160 micron observations of the solar-type stars alpha Men, HD 88230 and HD 210277, which form part of the FGK stars sample of the Herschel Open Time Key Programme (OTKP) DUNES (DUst around NEarby S tars). Our observat ions show small infrared excesses at 160 micron for all three stars. HD 210277 also shows a small excess at 100 micron, while the 100 micron fluxes of alpha Men and HD 88230 agree with the stellar photospheric predictions. We attribute these infrared excesses to a new class of cold, faint debris discs. alpha Men and HD 88230 are spatially resolved in the PACS 160 micron images, while HD 210277 is point-like at that wavelength. The projected linear sizes of the extended emission lie in the range from ~ 115 to ~ 250 AU. The estimated black body temperatures from the 100 and 160 micron fluxes are $lesssim$ 22 K, while the fractional luminosity of the cold dust is Ldust/Lstar ~ 10E-6, close to the luminosity of the Solar-Systems Kuiper belt. These debris discs are the coldest and faintest discs discovered so far around mature stars and cannot easily be explained by invoking classical debris disc models.
When observing an extrasolar planetary system, the most luminous component after the star itself is generally the light scattered and/or thermally emitted by a population of micron-sized dust grains. These grains are expected to be continuously reple nished by the collisions and evaporation of larger bodies just as in our solar zodiacal cloud. Exozodiacal clouds (exozodis) must therefore be seriously taken into account when attempting to directly image faint Earth-like planets (exoEarths, for short). This paper summarizes the oral contributions and discussions that took place during the Satellite Meeting on exozodiacal dust disks, in an attempt to address the following two questions: Do we need to solve the exozodi question? If yes, how to best solve it?
We present the first far-IR observations of the solar-type stars delta Pav, HR 8501, 51 Peg and zeta^2 Ret, taken within the context of the DUNES Herschel Open Time Key Programme (OTKP). This project uses the PACS and SPIRE instruments with the objec tive of studying infrared excesses due to exo-Kuiper belts around nearby solar-type stars. The observed 100 um fluxes from delta Pav, HR 8501, and 51 Peg agree with the predicted photospheric fluxes, excluding debris disks brighter than Ldust/Lstar ~ 5 x 10^-7 (1 sigma level) around those stars. A flattened, disk-like structure with a semi-major axis of ~ 100 AU in size is detected around zeta^2 Ret. The resolved structure suggests the presence of an eccentric dust ring, which we interpret as an exo-Kuiper belt with Ldust/Lstar ~ 10^-5.
173 - R. Liseau , C. Eiroa , D. Fedele 2010
About two dozen exo-solar debris systems have been spatially resolved. These debris discs commonly display a variety of structural features such as clumps, rings, belts, eccentric distributions and spiral patterns. In most cases, these features are b elieved to be formed, shaped and maintained by the dynamical influence of planets orbiting the host stars. In very few cases has the presence of the dynamically important planet(s) been inferred from direct observation. The solar-type star q1 Eri is known to be surrounded by debris, extended on scales of < 30. The star is known to host at least one planet, albeit on an orbit far too small to make it responsible for structures at distances of tens to hundreds of AU. The aim of the present investigation is twofold: to determine the optical and material properties of the debris and to infer the spatial distribution of the dust, which may hint at the presence of additional planets. The photodetector array camera and spectrometer (PACS) aboard the Herschel Space Observatory allows imaging observations in the far infrared at unprecedented resolution, i.e. at better than 6 to 12 over the wavelength range of 60 {mu}m to 210 {mu}m. Together with the results from ground-based observations, these spatially resolved data can be modelled to determine the nature of the debris and its evolution more reliably than would be possible from unresolved data alone. For the first time has the q1 Eri disc been resolved at far infrared wavelengths. The PACS observations at 70, 100 and 160 {mu}m reveal an oval image showing a disc-like structure in all bands, the size of which increases with wavelength. Assuming a circular shape yields the inclination of its equatorial plane with respect to that of the sky, i > 53deg. The results of image de-convolution indicate that i likely is larger than 63deg, where 90deg corresponds to an edge-on disc. {abridged}
The Serpens cloud has received considerable attention in the last years, in particular the small region known as the Serpens cloud core where a plethora of star formation related phenomena are found. This review summarizes our current observational k nowledge of the cloud, with emphasis on the core. Recent results are converging to a distance for the cloud of ~ 230 +- 20 pc, an issue which has been controversial over the years. We present the gas and dust properties of the cloud core and describe its structure and appearance at different wavelengths. The core contains a dense, very young, low mass stellar cluster with more than 300 objects in all evolutionary phases, from collapsing gaseous condensations to pre-main sequence stars. We describe the behaviour and spatial distribution of the different stellar populations (mm cores, Classes 0, I and II sources). The spatial concentration and the fraction number of Class 0/Class I/Class II sources is considerably larger in the Serpens core than in any other low mass star formation region, e.g. Taurus, Ophiuchus or Chamaeleon, as also stated in different works. Appropriate references for coordinates and fluxes of all Serpens objects are given. However, we provide for the first time a unified list of all near-IR sources which have up to now been identified as members of the Serpens core cluster; this list includes some members identified in this review. A cross-reference table of the near-IR objects with optical, mid-IR, submillimeter, radio continuum and X-ray surces is also provided. A simple analysis has allowed us to identify a sample of ~ 60 brown dwarf candidates among the 252 near-IR objects; some of them show near-IR excesses and, therefore, they constitute an attractive sample to study very young substellar objects. (abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا