ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the spin and charge accumulation in junctions between a superconductor and a ferromagnet or a normal metal in the presence of a Zeeman magnetic field, when the junction is taken out of equilibrium by applying a voltage bias. We write down th e most general form for the spin and charge current in such junctions, taking into account all spin-resolved possible tunneling processes. We make use of these forms to calculate the spin accumulation in NS junctions subjected to a DC bias, and to an AC bias, sinusoidal or rectangular. We observe that in the limit of negligeable changes on the superconducting gap, the NS dynamical conductance is insensitive to spin imbalance. Therefore to probe the spin accumulation in the superconductor, one needs to separate the injection and detection point, i. e. the electrical spin detection must be non-local. We address also the effect of the spin accumulation induced in the normal leads by driving a spin current and its effects on the detection of the spin accumulation in the superconductor. Finally, we investigate the out-of-equilibrium spin susceptibility of the SC, and we show that it deviates drastically from its equilibrium value.
We have measured the lifetime of spin imbalances in the quasiparticle population of a superconductor ($tau_s$) in the frequency domain. A time-dependent spin imbalance is created by injecting spin-polarised electrons at finite excitation frequencies into a thin-film mesoscopic superconductor (Al) in an in-plane magnetic field (in the Pauli limit). The time-averaged value of the spin imbalance signal as a function of excitation frequency, $f_{RF}$ shows a cut-off at $f_{RF} approx 1/(2pitau_s)$. The spin imbalance lifetime is relatively constant in the accessible ranges of temperatures, with perhaps a slight increase with increasing magnetic field. Taking into account sample thickness effects, $tau_s$ is consistent with previous measurements and of the order of the electron-electron scattering time $tau_{ee}$. Our data are qualitatively well-described by a theoretical model taking into account all quasiparticle tunnelling processes from a normal metal into a superconductor.
We study the interplay between the edge states and a single impurity in a zigzag graphene nanoribbon. We use tight-binding exact diagonalization techniques, as well as density functional theory calculations to obtain the eigenvalue spectrum, the eige nfunctions, as well the dependence of the local density of states (LDOS) on energy and position. We note that roughly half of the unperturbed eigenstates in the spectrum of the finite-size ribbon hybridize with the impurity state, and the corresponding eigenvalues are shifted with respect to their unperturbed values. The maximum shift and hybridization occur for a state whose energy is inverse proportional to the impurity potential; this energy is that of the impurity peak in the DOS spectrum. We find that the interference between the impurity and the edge gives rise to peculiar modifications of the LDOS of the nanoribbon, in particular to oscillations of the edge LDOS. These effects depend on the size of the system, and decay with the distance between the edge and the impurity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا