ترغب بنشر مسار تعليمي؟ اضغط هنا

Aims:To support the computation and evolutionary interpretation of periods associated with the rotational modulation, oscillations, and variability of stars located in the CoRoT fields, we are conducting a spectroscopic survey for stars located in th e fields already observed by the satellite. These observations allow us to compute physical and chemical parameters for our stellar sample. Method: Using spectroscopic observations obtained with UVES/VLT and Hydra/Blanco, and based on standard analysis techniques, we computed physical and chemical parameters ($T_{rm{eff}}$, $log ,(g)$, $rm{[Fe/H]}$, $v_{rm{mic}}$, $v_{rm{rad}}$, $v sin ,(i)$, and $A(rm{Li})$) for a large sample of CoRoT targets. Results: We provide physical and chemical parameters for a sample comprised of 138 CoRoT targets. Our analysis shows the stars in our sample are located in different evolutionary stages, ranging from the main sequence to the red giant branch, and range in spectral type from F to K. The physical and chemical properties for the stellar sample are in agreement with typical values reported for FGK stars. However, we report three stars presenting abnormal lithium behavior in the CoRoT fields. These parameters allow us to properly characterize the intrinsic properties of the stars in these fields. Our results reveal important differences in the distributions of metallicity, $T_{rm eff}$, and evolutionary status for stars belonging to different CoRoT fields, in agreement with results obtained independently from ground-based photometric surveys. Conclusions: Our spectroscopic catalog, by providing much-needed spectroscopic information for a large sample of CoRoT targets, will be of key importance for the successful accomplishment of several different programs related to the CoRoT mission, thus it will help further boost the scientific return associated with this space mission.
Spectra of composite systems (e.g., spectroscopic binaries) contain spatial information that can be retrieved by measuring the radial velocities (i.e., Doppler shifts) of the components in four observations with the slit rotated by 90 degrees in the sky. By using basic concepts of slit spectroscopy we show that the geometry of composite systems can be reliably retrieved by measuring only radial velocity differences taken with different slit angles. The spatial resolution is determined by the precision with which differential radial velocities can be measured. We use the UVES spectrograph at the VLT to observe the known spectroscopic binary star HD 188088 (HIP 97944), which has a maximum expected separation of 23 milli-arcseconds. We measure an astrometric signal in radial velocity of 276 ms, which corresponds to a separation between the two components at the time of the observations of 18 $pm2$ milli-arcseconds. The stars were aligned east-west. We describe a simple optical device to simultaneously record pairs of spectra rotated by 180 degrees, thus reducing systematic effects. We compute and provide the function expressing the shift of the centroid of a seeing-limited image in the presence of a narrow slit.The proposed technique is simple to use and our test shows that it is amenable for deriving astrometry with milli-arcsecond accuracy or better, beyond the diffraction limit of the telescope. The technique can be further improved by using simple devices to simultaneously record the spectra with 180 degrees angles.With tachoastrometry, radial velocities and astrometric positions can be measured simultaneously for many double line system binaries in an easy way. The method is not limited to binary stars, but can be applied to any astrophysical configuration in which spectral lines are generated by separate (non-rotational symmetric) regions.
Infalling motions were detected and modeled toward this source. A mean infall velocity of 0.5 km/s with an infall mass rate of 5x10^-3 Solar masses per year was obtained. Also, a previously estimated value for the magnetic field strength in the plane of the sky was refined to be 855 micro Gauss which we used to calculate a mass-to-magnetic flux ratio of 1.9, or super-critical. The virial mass from turbulent motions was also calculated finding Mvir=563 solar masses, which gives a ratio of Msubmm/Mvir=5.9. Both values strongly suggest that this clump must be in a state of gravitational collapse.
We report millimeter interferometric observations of polarized continuum and line emission from the massive star forming region G34.4. Polarized thermal dust emission at 3 mm wavelength and CO $J=1 to 0$ line emission were observed using the Berkeley -Illinois-Maryland Association (BIMA) array. Our results show a remarkably uniform polarization pattern in both dust and in CO J=$1 to 0$ emission. In addition, the line emission presents a consistent uniform polarization pattern over most of the velocity channel maps. These uniform polarization patterns are aligned with the north-south main axis of the filament between the main millimeter source (MM) and the ultra-compact H {scriptsize II} region, which are the central sources in G34.4, suggesting a magnetic field orthogonal to this axis. This morphology is consistent with a magnetically supported disk seen roughly edge-on.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا