ﻻ يوجد ملخص باللغة العربية
Aims:To support the computation and evolutionary interpretation of periods associated with the rotational modulation, oscillations, and variability of stars located in the CoRoT fields, we are conducting a spectroscopic survey for stars located in the fields already observed by the satellite. These observations allow us to compute physical and chemical parameters for our stellar sample. Method: Using spectroscopic observations obtained with UVES/VLT and Hydra/Blanco, and based on standard analysis techniques, we computed physical and chemical parameters ($T_{rm{eff}}$, $log ,(g)$, $rm{[Fe/H]}$, $v_{rm{mic}}$, $v_{rm{rad}}$, $v sin ,(i)$, and $A(rm{Li})$) for a large sample of CoRoT targets. Results: We provide physical and chemical parameters for a sample comprised of 138 CoRoT targets. Our analysis shows the stars in our sample are located in different evolutionary stages, ranging from the main sequence to the red giant branch, and range in spectral type from F to K. The physical and chemical properties for the stellar sample are in agreement with typical values reported for FGK stars. However, we report three stars presenting abnormal lithium behavior in the CoRoT fields. These parameters allow us to properly characterize the intrinsic properties of the stars in these fields. Our results reveal important differences in the distributions of metallicity, $T_{rm eff}$, and evolutionary status for stars belonging to different CoRoT fields, in agreement with results obtained independently from ground-based photometric surveys. Conclusions: Our spectroscopic catalog, by providing much-needed spectroscopic information for a large sample of CoRoT targets, will be of key importance for the successful accomplishment of several different programs related to the CoRoT mission, thus it will help further boost the scientific return associated with this space mission.
The study of stellar parameters of planet-hosting stars, such as metallicity and chemical abundances, help us to understand the theory of planet formation and stellar evolution. Here, we present a catalogue of accurate stellar atmospheric parameters
In this work we quantify the effect of an unresolved companion star on the derived stellar parameters of the primary star if a blended spectrum is fit assuming the star is single. Fitting tools that determine stellar parameters from spectra typically
Time-series photometry of the CoRoT field SRc02 was obtained by the Berlin Exoplanet Search Telescope II (BEST II) in 2009. The main aim was the ground based follow-up of the CoRoT field in order to detect variable stars with better spatial resolutio
Until a few years ago, the amplitude variation in the photometric data had been limitedly explored mainly because of time resolution and photometric sensitivity limitations. This investigation is now possible thanks to the Kepler and CoRoT databases
The relative distribution of abundances of refractory, intermediate, and volatile elements in stars with planets can be an important tool for investigating the internal migration of a giant planet. This migration can lead to the accretion of planetes