ترغب بنشر مسار تعليمي؟ اضغط هنا

Hubble Space Telescope photometry of $eta$ Carinae spans 23 years, including five spectroscopic events. The rapid brightening rate decreased after 2010, and the spectroscopic events in 2014 and 2020 had light curves different from their predecessors. Together with other indicators, these developments probably foretell the conclusion of $eta$ Cars change of state.
We analyze the photometric variability of over 6,000 active galactic nuclei (AGNs) from the Sloan Digital Sky Survey Stripe 82. We recover the spectral energy distribution (SED) of the variable flux as a function of wavelength. For rest wavelengths l onger than $sim 2200$ Angstroms we find that the SED of the variable component of the bluest AGNs is in agreement with the $F_{ u} propto u^{+1/3}$ spectrum predicted for an externally-illuminated accretion disc. We confirm there is some residual variable emission corresponding to the small blue bump and other broad-line region variability. We interpret steeper optical spectra of the variable component as being due to intrinsic reddening. This is supported by the correlation of the Balmer decrement with the colour excess of the variable component. We find that the median reddening of the SDSS AGNs in Stripe 82 is $E(B-V) thickapprox 0.17$ in agreement with the reddening derived from the Balmer decrement.
We report on new stability conditions for evolutionary dynamics in the context of population games. We adhere to the prevailing framework consisting of many agents, grouped into populations, that interact noncooperatively by selecting strategies with a favorable payoff. Each agent is repeatedly allowed to revise its strategy at a rate referred to as revision rate. Previous stability results considered either that the payoff mechanism was a memoryless potential game, or allowed for dynamics (in the payoff mechanism) at the expense of precluding any explicit dependence of the agents revision rates on their current strategies. Allowing the dependence of revision rates on strategies is relevant because the agents strategies at any point in time are generally unequal. To allow for strategy-dependent revision rates and payoff mechanisms that are dynamic (or memoryless games that are not potential), we focus on an evolutionary dynamics class obtained from a straightforward modification of one that stems from the so-called impartial pairwise comparison strategy revision protocol. Revision protocols consistent with the modified class retain from those in the original one the advantage that the agents operate in a fully decentralized manner and with minimal information requirements - they need to access only the payoff values (not the mechanism) of the available strategies. Our main results determine conditions under which system-theoretic passivity properties are assured, which we leverage for stability analysis.
n this paper, we employ a fully microscopic approach to the study of interlayer excitons in layered materials. We discuss the utilization of Fowlers and Karplus method to access the dynamical polarizability of non--interacting interlayer excitons in a $mathrm{WSe}_{2}/mathrm{WS}_{2}$--based van der Waals heterostructure. Following from the calculation of the linear polarizability, we consider Svendsens variational method to the dynamic third--order polarizability. With this variational method, we study both two--photon absorption and third--harmonic generation processes for interlayer excitons in a $mathrm{WSe}_{2}/mathrm{WS}_{2}$ hetero--bilayer, discussing the various intra--excitonic energy level transitions observed.
Attestation is a strong tool to verify the integrity of an untrusted system. However, in recent years, different attacks have appeared that are able to mislead the attestation process with treacherous practices as memory copy, proxy and rootkit attac ks, just to name a few. A successful attack leads to systems that are considered trusted by a verifier system, while the prover has bypassed the challenge. To harden these attacks against attestation methods and protocols, some proposals have considered the use of side-channel information that can be measured externally, as it is the case of electromagnetic (EM) emanation. Nonetheless, these methods require the physical proximity of an external setup to capture the EM radiation. In this paper, we present the possibility of performing attestation by using the side channel information captured by a sensor or peripheral that lives in the same System-on-Chip (SoC) than the processor system (PS) which executes the operation that we aim to attest, by only sharing the Power Distribution Network (PDN). In our case, an analog-to-digital converter (ADC) that captures the voltage fluctuations at its input terminal while a certain operation is taking place is suitable to characterize itself and to distinguish it from other binaries. The resultant power traces are enough to clearly identify a given operation without the requirement of physical proximity.
Incompatible observables underlie pillars of quantum physics such as contextuality and entanglement. The Heisenberg uncertainty principle is a fundamental limitation on the measurement of the product of incompatible observables, a `joint measurement. However, recently a method using weak measurement has experimentally demonstrated joint measurement. This method [Lundeen, J. S., and Bamber, C. Phys. Rev. Lett. 108, 070402, 2012] delivers the standard expectation value of the product of observables, even if they are incompatible. A drawback of this method is that it requires coupling each observable to a distinct degree of freedom (DOF), i.e., a disjoint Hilbert space. Typically, this `read-out system is an unused internal DOF of the measured particle. Unfortunately, one quickly runs out of internal DOFs, which limits the number of observables and types of measurements one can make. To address this limitation, we propose and experimentally demonstrate a technique to perform a joint weak-measurement of two incompatible observables using only one DOF as a read-out system. We apply our scheme to directly measure the density matrix of photons polarization.
Exoplanets are abundant in our galaxy and yet characterizing them remains a technical challenge. Solar System planets provide an opportunity to test the practical limitations of exoplanet observations with high signal-to-noise data that we cannot acc ess for exoplanets. However, data on Solar System planets differ from exoplanets in that Solar System planets are spatially resolved while exoplanets are unresolved point-sources. We present a novel instrument designed to observe Solar System planets as though they are exoplanets, the Planet as Exoplanet Analog Spectrograph (PEAS). PEAS consists of a dedicated 0.5-m telescope and off-the-shelf optics, located at Lick Observatory. PEAS uses an integrating sphere to disk-integrate light from the Solar System planets, producing spatially mixed light more similar to the spectra we can obtain from exoplanets. This paper describes the general system design and early results of the PEAS instrument.
In this paper we develop a fully microscopic theory of the polarizability of excitons in transition metal dichalcogenides. We apply our method to the description of the excitation $2$p dark states. These states are not observable in absorption experi ments but can be excited in a pump-probe experiment. As an example we consider $2$p dark states in WSetextsubscript{2}. We find a good agreement between recent experimental measurements and our theoretical calculations.
In this colloquium, we review the research on excitons in van der Waals heterostructures from the point of view of variational calculations. We first make a presentation of the current and past literature, followed by a discussion on the connections between experimental and theoretical results. In particular, we focus our review of the literature on the absorption spectrum and polarizability, as well as the Stark shift and the dissociation rate. Afterwards, we begin the discussion of the use of variational methods in the study of excitons. We initially model the electron-hole interaction as a soft-Coulomb potential, which can be used to describe interlayer excitons. Using an emph{ansatz}, based on the solution for the two-dimensional quantum harmonic oscillator, we study the Rytova-Keldysh potential, which is appropriate to describe intralayer excitons in two-dimensional (2D) materials. These variational energies are then recalculated with a different emph{ansatz}, based on the exact wavefunction of the 2D hydrogen atom, and the obtained energy curves are compared. Afterwards, we discuss the Wannier-Mott exciton model, reviewing it briefly before focusing on an application of this model to obtain both the exciton absorption spectrum and the binding energies for certain values of the physical parameters of the materials. Finally, we briefly discuss an approximation of the electron-hole interaction in interlayer excitons as an harmonic potential and the comparison of the obtained results with the existing values from both first--principles calculations and experimental measurements.
A MHz gravitational wave search for harmonic sources was conducted using a 704-hr dataset obtained from the Holometer, a pair of 40-meter power recycled Michelson interferometers. Our search was designed to look for cosmic string loops and eccentric black hole binaries in an entirely unexplored frequency range from 1 to 25 MHz. The measured cross-spectral density between both interferometers was used to perform four different searches. First, we search to identify any fundamental frequencies bins that have excess power above 5$sigma$. Second, we reduce the per-bin threshold on any individual frequency bin by employing that a fundamental frequency and its harmonics all collectively lie above a threshold. We vary the number of harmonics searched over from $n= 4$ up to $n=23$. Third, we perform an agnostic approach to identify harmonic candidates that may have a single contaminated frequency bin or follow a power-law dependence. Lastly, we expand on the agnostic approach for individual candidates and search for a potential underlying population of harmonic sources. Each method was tested on the interferometer dataset, as well as a dark noise, photon shot-noise-limited, and simulated Gaussian-noise datasets. We conclude that these four different search methods did not find any candidate frequencies that would be consistent with harmonic sources. This work presents a new way of searching for gravitational wave candidates, which allowed us to survey a previously unexplored frequency range.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا