ترغب بنشر مسار تعليمي؟ اضغط هنا

Pairwise Comparison Evolutionary Dynamics with Strategy-Dependent Revision Rates: Stability and Delta-Passivity (Expanded Version)

27   0   0.0 ( 0 )
 نشر من قبل Semih Kara
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on new stability conditions for evolutionary dynamics in the context of population games. We adhere to the prevailing framework consisting of many agents, grouped into populations, that interact noncooperatively by selecting strategies with a favorable payoff. Each agent is repeatedly allowed to revise its strategy at a rate referred to as revision rate. Previous stability results considered either that the payoff mechanism was a memoryless potential game, or allowed for dynamics (in the payoff mechanism) at the expense of precluding any explicit dependence of the agents revision rates on their current strategies. Allowing the dependence of revision rates on strategies is relevant because the agents strategies at any point in time are generally unequal. To allow for strategy-dependent revision rates and payoff mechanisms that are dynamic (or memoryless games that are not potential), we focus on an evolutionary dynamics class obtained from a straightforward modification of one that stems from the so-called impartial pairwise comparison strategy revision protocol. Revision protocols consistent with the modified class retain from those in the original one the advantage that the agents operate in a fully decentralized manner and with minimal information requirements - they need to access only the payoff values (not the mechanism) of the available strategies. Our main results determine conditions under which system-theoretic passivity properties are assured, which we leverage for stability analysis.

قيم البحث

اقرأ أيضاً

Temporal environmental variations are ubiquitous in nature, yet most of the theoretical works in population genetics and evolution assume fixed environment. Here we analyze the effect of variations in carrying capacity on the fate of a mutant type. W e consider a two-state Moran model, where selection intensity at equilibrium may differ (in amplitude and in sign) from selection during periods of sharp growth and sharp decline. Using Kimuras diffusion approximation we present simple formulae for effective population size and effective selection, and use it to calculate the chance of ultimate fixation, the time to fixation and the time to absorption (either fixation or loss). Our analysis shows perfect agreement with numerical solutions for neutral, beneficial and deleterious mutant. The contributions of different processes to the mean and the variance of abundance variations are additive and commutative. As a result, when selection intensity $s$ is weak such that ${cal O}(s^2)$ terms are negligible, periodic or stochastic environmental variations yield identical results.
100 - Jacek Miekisz 2007
Many socio-economic and biological processes can be modeled as systems of interacting individuals. The behaviour of such systems can be often described within game-theoretic models. In these lecture notes, we introduce fundamental concepts of evoluti onary game theory and review basic properties of deterministic replicator dynamics and stochastic dynamics of finite populations. We discuss stability of equilibria in deterministic dynamics with migration, time-delay, and in stochastic dynamics of well-mixed populations and spatial games with local interactions. We analyze the dependence of the long-run behaviour of a population on various parameters such as the time delay, the noise level, and the size of the population.
289 - Nicholas Guttenberg 2021
In this paper, we wish to investigate the dynamics of information transfer in evolutionary dynamics. We use information theoretic tools to track how much information an evolving population has obtained and managed to retain about different environmen ts that it is exposed to. By understanding the dynamics of information gain and loss in a static environment, we predict how that same evolutionary system would behave when the environment is fluctuating. Specifically, we anticipate a cross-over between the regime in which fluctuations improve the ability of the evolutionary system to capture environmental information and the regime in which the fluctuations inhibit it, governed by a cross-over in the timescales of information gain and decay.
We provide a classification of symmetric three-player games with two strategies and investigate evolutionary and asymptotic stability (in the replicator dynamics) of their Nash equilibria. We discuss similarities and differences between two-player an d multi-player games. In particular, we construct examples which exhibit a novel behavior not found in two-player games.
220 - J. C. Flores 2008
After Laskar, the Lyapunov time in the solar system is about five millions years (5.000.000 [years]). On the other hand, after Kimura, the evolutionary (phenotypic) rate, for hominids, is 1/5.000.000 [1/years]. Why are these two quantities so closely related? In this work, following a proposition by Finlayson and Hutchings et al, I found an inequality, which relates Lyapunov time and evolution rate. This inequality fits well with some known cases in biological evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا