ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear astrophysics, the union of nuclear physics and astronomy, went through an impressive expansion during the last twenty years. This could be achieved thanks to milestone improvements in astronomical observations, cross section measurements, pow erful computer simulations and much refined stellar models. Italian groups are giving quite important contributions to every domain of nuclear astrophysics, sometimes being the leaders of worldwide unique experiments. In this paper we will discuss the astrophysical scenarios where nuclear astrophysics plays a key role and we will provide detailed descriptions of the present and future of the experiments on nuclear astrophysics which belong to the scientific programme of INFN (the National Institute for Nuclear Physics in Italy).
Time modulations at per mil level have been reported to take place in the decay constant of several nuclei with period of one year (most cases) but also of about one month or one day. On the other hand, experiments with similar or better sensitivity have been unable to detect any modulation. In this letter we give the results of the activity study of two different sources: 40K and 226Ra. The two gamma spectrometry experiments have been performed underground at the Gran Sasso Laboratory, this way suppressing the time dependent cosmic ray background. Briefly, our measurements reached the sensitivity of 3.4 and 3.5 parts over 10^6 for 40K and 226Ra, respectively (1 sigma) and they do not show any statistically significant evidence of time dependence in the decay constant. We also give the results of the activity measurement at the time of the two strong X-class solar flares which took place in September 2017. Our data do not show any unexpected time dependence in the decay rate of 40K in correspondence with the two flares. To the best of our knowledge, these are the most precise and accurate results on the stability of the decay constant as function of time.
We give the results of a study on the 222Rn decay we performed in the Gran Sasso Laboratory (LNGS) by detecting the gamma rays from the radon progeny. The motivation was to monitor the stability of radioactivity measuring several times per year the h alf-life of a short lifetime (days) source instead of measuring over a long period the activity of a long lifetime (tens or hundreds of years) source. In particular, we give a possible reason of the large periodical fluctuations in the count rate of the gamma rays due to radon inside a closed canister which has been described in literature and which has been attributed to a possible influence of a component in the solar irradiation affecting the nuclear decay rates. We then provide the result of four half-life measurements we performed underground at LNGS in the period from May 2014 to January 2015 with radon diffused into olive oil. Briefly, we did not measure any change of the 222Rn half-life with a 8*10^-5 precision. Finally, we provide the most precise value for the 222Rn half-life: 3.82146(16){stat}(4){syst} days.
Materials containing radionuclides of natural origin, which is modified by human made processes and being subject to regulation because of their radioactivity are known as NORM. We present a brief review of the main categories of non-nuclear industri es together with the levels of activity concentration in feed raw materials, products and waste, including mechanisms of radioisotope enrichments. The global management of NORM shows a high level of complexity, mainly due to different degrees of radioactivity enhancement and the huge amount of worldwide waste production. The future tendency of guidelines concerning environmental protection will require both a systematic monitoring based on the ever-increasing sampling and high performance of gamma ray spectroscopy. On the ground of these requirements a new low background fully automated high-resolution gamma-ray spectrometer MCA_Rad has been developed. The design of Pb and Cu shielding allowed to reach a background reduction of two order of magnitude with respect to laboratory radioactivity. A severe lowering of manpower cost is obtained through a fully automation system, which enables up to 24 samples to be measured without any human attendance. Two coupled HPGe detectors increase the detection efficiency, performing accurate measurements on sample volume (180 cc) with a reduction of sample transport cost of material. Details of the instrument calibration method are presented. MCA_Rad system can measure in less than one hour a typical NORM sample enriched in U and Th with some hundreds of Bq/kg, with an overall uncertainty less than 5%. Quality control of this method has been tested. Measurements of certified reference materials RGK-1, RGU-2 and RGTh-1 containing concentrations of K, U and Th comparable to NORM have been performed, resulting an overall relative discrepancy of 5% among central values within the reported uncertainty.
The primordial abundance of 7Li as predicted by Big Bang Nucleosynthesis (BBN) is more than a factor 2 larger than what has been observed in metal-poor halo stars. Herein, we analyze the possibility that this discrepancy originates from incorrect ass umptions about the nuclear reaction cross sections relevant for BBN. To do this, we introduce an efficient method to calculate the changes in the 7Li abundance produced by arbitrary (temperature dependent) modifications of the nuclear reaction rates. Then, considering that 7Li is mainly produced from 7Be via the electron capture process 7Be + e -> 7Li + nu_e, we assess the impact of the various channels of 7Be destruction. Differently from previous analysis, we consider the role of unknown resonances by using a complete formalism which takes into account the effect of Coulomb and centrifugal barrier penetration and that does not rely on the use of the narrow-resonance approximation. As a result of this, the possibility of a nuclear physics solution to the 7Li problem is significantly suppressed. Given the present experimental and theoretical constraints, it is unlikely that the 7Be + n destruction rate is underestimated by the 2.5 factor required to solve the problem. We exclude, moreover, that resonant destruction in the channels 7Be + t and 7Be + 3He can explain the 7Li puzzle. New unknown resonances in 7Be + d and 7Be + alpha could potentially produce significant effects. Recent experimental results have ruled out such a possibility for 7Be+d. On the other hand, for the 7Be + alpha channel very favorable conditions are required. The possible existence of a partially suitable resonant level in 11C is studied in the framework of a coupled-channel model and the possibility of a direct measurement is considered.
An escape-suppressed, composite high-purity germanium detector of the Clover type has been installed at the Laboratory for Underground Nuclear Astrophysics (LUNA) facility, deep underground in the Gran Sasso Laboratory, Italy. The laboratory gamma-ra y background of the Clover detector has been studied underground at LUNA and, for comparison, also in an overground laboratory. Spectra have been recorded both for the single segments and for the virtual detector formed by online addition of all four segments. The effect of the escape-suppression shield has been studied as well. Despite their generally higher intrinsic background, escape-suppressed detectors are found to be well suited for underground nuclear astrophysics studies. As an example for the advantage of using a composite detector deep underground, the weak ground state branching of the Ep = 223 keV resonance in the 24Mg(p,gamma)25Al reaction is determined with improved precision.
37 - M. Avenier 2001
We report on the performance of a 1 m$^{3}$ TPC filled with CF$_{4}$ at 3 bar, immersed in liquid scintillator and viewed by photomultipliers. Particle detection, event identification and localization achieved by measuring both the current signal and the scintillation light are presented. Particular features of $alpha$ particle detection are also discussed. Finally, the ${54}$Mn photopeak, reconstructed from the Compton scattering and recoil angle is shown.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا