ترغب بنشر مسار تعليمي؟ اضغط هنا

In the Deep Underground Neutrino Experiment (DUNE), the VUV LAr luminescence is collected by light trap devices named X-Arapuca, sizing (480x93) mm2. Six thousand of these units will be deployed in the first DUNE ten kiloton far detector module. In t his work we present the first characterization of the photon detection efficiency of an X-Arapuca device sizing (200x75) mm2 via a complete and accurate set of measurements along the cell longitudinal axis with a movable 241-Am source. The MPPCs photosensors are readout by a cryogenic transimpedance amplifier to enhance the single photoelectron sensitivity and improve the signal-to-noise while ganging 8 MPPC for a total surface of 288 mm2. Moreover we developed a new photon downshifting polymeric material, by which the X-Arapuca photon detection efficiency was enhanced of about +50% with respect to the baseline off-shell product deployed in the standard device configuration. The achieved results are compared to previous measurements on a half size X-Arapuca device, with a fixed source facing the center, with no cold amplification stage, and discussed in view of the DUNE full size optical cell construction for both the horizontal and the vertical drift configurations of the DUNE TPC design and in view of liquid Argon doping by ppms of Xe. Other particle physics projects adopting Liquid Argon as target or active veto, as Dark Side and LEGEND or the DUNE Near Detector will take advantage of this novel wavelength shifting material.
An investigation on stochastic deflection of high-energy charged particles in a bent crystal was carried out. In particular, we investigated the deflection efficiency under axial confinement of both positively and negatively charged particles as a fu nction of the crystal orientation, the choice of the bending plane, and of the charge sign. Analytic estimations and numerical simulations were compared with dedicated experiments at the H4 secondary beam line of SPS North Area, with 120 GeV/$c$ electrons and positrons. In the work presented in this article, the optimal orientations of the plane of bending of the crystal, which allow deflecting the largest number of charged particles using a bent crystal in axial orientation, were found.
We present the first application of polysiloxane-based scintillators as active medium in a shashlik sampling calorimeter. These results were obtained from a testbeam campaign of a $sim$6$times$6$times$45 cm$^3$ (13 $X_0$ depth) prototype. A Wavelengt h Shifting fiber array of 36 elements runs perpendicularly to the stack of iron (15 mm) and polysiloxane scintillator (15 mm) tiles with a density of about one over cm$^2$. Unlike shashlik calorimeters based on plastic organic scintillators, here fibers are optically matched with the scintillator without any intermediate air gap. The prototype features a compact light readout based on Silicon Photo-Multipliers embedded in the bulk of the detector. The detector was tested with electrons, pions and muons with energies ranging from 1 to 7 GeV at the CERN-PS. This solution offers a highly radiation hard detector to instrument the decay region of a neutrino beam, providing an event-by-event measurement of high-angle decay products associated with neutrino production (ENUBET, Enhanced NeUtrino BEams from kaon Tagging, ERC project). The results in terms of light yield, uniformity and energy resolution, are compared to a similar calorimeter built with ordinary plastic scintillators.
The longitudinal segmentation of shashlik calorimeters is challenged by dead zones and non-uniformities introduced by the light collection and readout system. This limitation can be overcome by direct fiber-photosensor coupling, avoiding routing and bundling of the wavelength shifter fibers and embedding ultra-compact photosensors (SiPMs) in the bulk of the calorimeter. We present the first experimental test of this readout scheme performed at the CERN PS-T9 beamline in 2015 with negative particles in the 1-5~GeV energy range. In this paper, we demonstrate that the scheme does not compromise the energy resolution and linearity compared with standard light collection and readout systems. In addition, we study the performance of the calorimeter for partially contained charged hadrons to assess the $e/pi$ separation capability and the response of the photosensors to direct ionization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا