ترغب بنشر مسار تعليمي؟ اضغط هنا

As demonstrated in our previous work [J. Chem. Phys. 149, 174109 (2018)], the kinetic energy imparted to a quantum rotor by a non-resonant electromagnetic pulse with a Gaussian temporal profile exhibits quasi-periodic drops as a function of the pulse duration. Herein, we show that this behaviour can be reproduced with a simple waveform, namely a rectangular electric pulse of variable duration, and examine, both numerically and analytically, its causes. Our analysis reveals that the drops result from the oscillating populations that make up the wavepacket created by the pulse and that they are necessarily accompanied by drops in the orientation and by a restoration of the pre-pulse alignment of the rotor. Handy analytic formulae are derived that allow to predict the pulse durations leading to diminished kinetic energy transfer and orientation. Experimental scenarios are discussed where the phenomenon could be utilized or be detrimental.
We investigate, both analytically and numerically, the quantum dynamics of a planar (2D) rigid rotor subject to suddenly switched-on or switched-off concurrent orienting and aligning interactions. We find that the time-evolution of the post-switch po pulations as well as of the expectation values of orientation and alignment reflects the spectral properties and the eigensurface topology of the planar pendulum eigenproblem established in our earlier work [Frontiers in Physics 2, 37 (2014); Eur. Phys. J. D 71, 149 (2017)]. This finding opens the possibility to examine the topological properties of the eigensurfaces experimentally as well as provides the means to make use of these properties for controlling the rotor dynamics in the laboratory.
We investigated the spin dynamics by electron spin resonance (ESR) of the Yb-based, effective spin-1/2 delafossites NaYbO$_{2}$, AgYbO$_{2}$, LiYbS$_{2}$, NaYbS$_{2}$, and NaYbSe$_{2}$ which all show an absence of magnetic order down to lowest reacha ble temperatures and thus are prime candidates to host a quantum spin-liquid ground state in the vicinity of long range magnetic order. Clearly resolved ESR spectra allow to obtain well-defined $g$ values which are determined by the crystal field of the distorted octahedral surrounding of the Yb-ions in trigonal symmetry. This local crystal field information provides important input to characterize the effective $S = 1/2$ Kramers doublet as well as the anisotropic exchange coupling between the Yb ions which is crucial for the nature of the groundstate. The ESR linewidth $Delta B$ is characterised by the spin dynamics and is mainly determined by the anisotropic exchange coupling. We discuss and compare $Delta B$ of the above mentioned delafossites focussing on the low temperature behaviour which is dominated by the growing influence of spin correlations.
WavePacket is an open-source program package for numerical simulations in quantum dynamics. Building on the previous Part I [Comp. Phys. Comm. 213, 223-234 (2017)] and Part II [Comp. Phys. Comm. 228, 229-244 (2018)] which dealt with quantum dynamics of closed and open systems, respectively, the present Part III adds fully classical and mixed quantum-classical propagations to WavePacket. In those simulations classical phase-space densities are sampled by trajectories which follow (diabatic or adiabatic) potential energy surfaces. In the vicinity of (genuine or avoided) intersections of those surfaces trajectories may switch between surfaces. To model these transitions, two classes of stochastic algorithms have been implemented: (1) J. C. Tullys fewest switches surface hopping and (2) Landau-Zener based single switch surface hopping. The latter one offers the advantage of being based on adiabatic energy gaps only, thus not requiring non-adiabatic coupling information any more. The present work describes the MATLAB version of WavePacket 6.0.2 which is essentially an object-oriented rewrite of previo
In quasi-2D quantum magnets the ratio of Neel temperature $T_text N$ to Curie-Weiss temperature $Theta_text{CW}$ is frequently used as an empirical criterion to judge the strength of frustration. In this work we investigate how these quantities are r elated in the canonical quasi-2D frustrated square or triangular $J_1$-$J_2$ model. Using the self-consistent Tyablikov approach for calculating $T_text N$ we show their dependence on the frustration control parameter $J_2/J_1$ in the whole Neel and columnar antiferromagnetic phase region. We also discuss approximate analytical results. In addition the field dependence of $T_text N(H)$ and the associated possible reentrance behavior of the ordered moment due to quantum fluctuations is investigated. These results are directly applicable to a class of quasi-2D oxovanadate antiferromagnets. We give clear criteria to judge under which conditions the empirical frustration ratio $f=Theta_text{CW}/T_text N$ may be used as measure of frustration strength in the quasi-2D quantum magnets.
We overview physical effects of exchange frustration and quantum spin fluctuations in (quasi-) two dimensional (2D) quantum magnets ($S=1/2$) with square, rectangular and triangular structure. Our discussion is based on the $J_1$-$J_2$ type frustrate d exchange model and its generalizations. These models are closely related and allow to tune between different phases, magnetically ordered as well as more exotic nonmagnetic quantum phases by changing only one or two control parameters. We survey ground state properties like magnetization, saturation fields, ordered moment and structure factor in the full phase diagram as obtained from numerical exact diagonalization computations and analytical linear spin wave theory. We also review finite temperature properties like susceptibility, specific heat and magnetocaloric effect using the finite temperature Lanczos method. This method is powerful to determine the exchange parameters and g-factors from experimental results. We focus mostly on the observable physical frustration effects in magnetic phases where plenty of quasi-2D material examples exist to identify the influence of quantum fluctuations on magnetism.
WavePacket is an open-source program package for numeric simulations in quantum dynamics. It can solve time-independent or time-dependent linear Schrodinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows, e.g., to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semi-classical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. Being highly versatile and offering visualization of quantum dynamics on the fly, WavePacket is well suited for teaching or research projects in atomic, molecular and optical physics as well as in physical or theoretical chemistry. Building on the previous Part I which dealt with closed quantum systems and discrete variable representations, the present Part II focuses on the dynamics of open quantum systems, with Lindblad operators modeling dissipation and dephasing. This part also describes the WavePacket function for optimal control of quantum dynamics, building on rapid monotonically convergent iteration methods. Furthermore, two different approaches to dimension reduction implemented in WavePacket are documented here. In the first one, a balancing transformation based on the concepts of controllability and observability Gramians is used to identify states that are neither well controllable nor well observable. Those states are either truncated or averaged out. In the other approach, the H2-error for a given reduced dimensionality is minimized by H2 optimal model reduction techniques, utilizing a bilinear iterative rational Krylov algorithm.
We have subjected the planar pendulum eigenproblem to a symmetry analysis with the goal of explaining the relationship between its conditional quasi-exact solvability (C-QES) and the topology of its eigenenergy surfaces, established in our earlier wo rk [Frontiers in Physical Chemistry and Chemical Physics 2, 1-16, (2014)]. The present analysis revealed that this relationship can be traced to the structure of the tridiagonal matrices representing the symmetry-adapted pendular Hamiltonian, as well as enabled us to identify many more -- forty in total to be exact -- analytic solutions. Furthermore, an analogous analysis of the hyperbolic counterpart of the planar pendulum, the Razavy problem, which was shown to be also C-QES [American Journal of Physics 48, 285 (1980)], confirmed that it is anti-isospectral with the pendular eigenproblem. Of key importance for both eigenproblems proved to be the topological index $kappa$, as it determines the loci of the intersections (genuine and avoided) of the eigenenergy surfaces spanned by the dimensionless interaction parameters $eta$ and $zeta$. It also encapsulates the conditions under which analytic solutions to the two eigenproblems obtain and provides the number of analytic solutions. At a given $kappa$, the anti-isospectrality occurs for single states only (i.e., not for doublets), like C-QES holds solely for integer values of $kappa$, and only occurs for the lowest eigenvalues of the pendular and Razavy Hamiltonians, with the order of the eigenvalues reversed for the latter. For all other states, the pendular and Razavy spectra become in fact qualitatively different, as higher pendular states appear as doublets whereas all higher Razavy states are singlets.
WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schrodinger and Liouville-von Neumann-equations in one or more dimensions. Als o coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry.The graphical capabilities allow visualization of quantum dynamics on the fly, including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry.The present Part I deals with the description of closed quantum systems in terms of Schrodinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization.The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics.The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found.
We investigate thermodynamic properties like specific heat $c_{V}$ and susceptibility $chi$ in anisotropic $J_1$-$J_2$ triangular quantum spin systems ($S=1/2$). As a universal tool we apply the finite temperature Lanczos method (FTLM) based on exact diagonalization of finite clusters with periodic boundary conditions. We use clusters up to $N=28$ sites where the thermodynamic limit behavior is already stably reproduced. As a reference we also present the full diagonalization of a small eight-site cluster. After introducing model and method we discuss our main results on $c_V(T)$ and $chi(T)$. We show the variation of peak position and peak height of these quantities as function of control parameter $J_2/J_1$. We demonstrate that maximum peak positions and heights in Neel phase and spiral phases are strongly asymmetric, much more than in the square lattice $J_1$-$J_2$ model. Our results also suggest a tendency to a second side maximum or shoulder formation at lower temperature for certain ranges of the control parameter. We finally explicitly determine the exchange model of the prominent triangular magnets Cs$_2$CuCl$_4$ and Cs$_{2}$CuBr$_{4}$ from our FTLM results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا