ترغب بنشر مسار تعليمي؟ اضغط هنا

The interstellar medium of the Milky Way is multi-phase, magnetized and turbulent. Turbulence in the interstellar medium produces a global cascade of random gas motions, spanning scales ranging from 100 parsecs to 1000 kilometres. Fundamental paramet ers of interstellar turbulence such as the sonic Mach number (the speed of sound) have been difficult to determine because observations have lacked the sensitivity and resolution to directly image the small-scale structure associated with turbulent motion. Observations of linear polarization and Faraday rotation in radio emission from the Milky Way have identified unusual polarized structures that often have no counterparts in the total radiation intensity or at other wavelengths, and whose physical significance has been unclear. Here we report that the gradient of the Stokes vector (Q,U), where Q and U are parameters describing the polarization state of radiation, provides an image of magnetized turbulence in diffuse ionized gas, manifested as a complex filamentary web of discontinuities in gas density and magnetic field. Through comparison with simulations, we demonstrate that turbulence in the warm ionized medium has a relatively low sonic Mach number, M_s <~ 2. The development of statistical tools for the analysis of polarization gradients will allow accurate determinations of the Mach number, Reynolds number and magnetic field strength in interstellar turbulence over a wide range of conditions.
We present a study of the line-of-sight magnetic fields in five large-diameter Galactic HII regions. Using the Faraday rotation of background polarized radio sources, as well as dust-corrected H-alpha surface brightness as a probe of electron density , we estimated the strength and orientation of the magnetic field along 93 individual sight-lines through the HII regions. Each of the HII regions displayed a coherent magnetic field. The magnetic field strength (line-of-sight component) in the regions ranges from 2 to 6 microgauss, which is similar to the typical magnetic field strength in the diffuse interstellar medium. We investigated the relationship between magnetic field strength and electron density in the 5 HII regions. The slope of magnetic field vs. density in the low-density regime (0.8 < n_e < 30 per cubic cm) is very slightly above zero. We also calculated the ratio of thermal to magnetic pressure, beta_th, for each data point, which fell in the range 1.01 < beta_th < 25. Finally, we studied the orientation of the magnetic field in the solar neighborhood (d < 1.1 kpc) using our data from 5 HII regions along with existing measurements of the line-of-sight magnetic field strength from polarized pulsars whose distances have been determined from their annual parallax. We identify a net direction for the magnetic field in the solar neighborhood, but find no evidence for a preferred vertical direction of the magnetic field above or below the Galactic plane.
We describe a 22-year survey for variable and transient radio sources, performed with archival images taken with the Molonglo Observatory Synthesis Telescope (MOST). This survey covers $2775 unit{deg^2}$ of the sky south of $delta < -30degree$ at an observing frequency of 843 MHz, an angular resolution of $45 times 45 csc | delta| unit{arcsec^2}$ and a sensitivity of $5 sigma geq 14 unit{mJy beam^{-1}}$. We describe a technique to compensate for image gain error, along with statistical techniques to check and classify variability in a population of light curves, with applicability to any image-based radio variability survey. Among radio light curves for almost 30000 sources, we present 53 highly variable sources and 15 transient sources. Only 3 of the transient sources, and none of the variable sources have been previously identified as transient or variable. Many of our variable sources are suspected scintillating Active Galactic Nuclei. We have identified three variable sources and one transient source that are likely to be associated with star forming galaxies at $z simeq 0.05$, but whose implied luminosity is higher than the most luminous known radio supernova (SN1979C) by an order of magnitude. We also find a class of variable and transient source with no optical counterparts.
One of the five key science projects for the Square Kilometre Array (SKA) is The Origin and Evolution of Cosmic Magnetism, in which radio polarimetry will be used to reveal what cosmic magnets look like and what role they have played in the evolving Universe. Many of the SKA prototypes now being built are also targeting magnetic fields and polarimetry as key science areas. Here I review the prospects for innovative new polarimetry and Faraday rotation experiments with forthcoming facilities such as ASKAP, LOFAR, the ATA, the EVLA, and ultimately the SKA. Sensitive wide-field polarisation surveys with these telescopes will provide a dramatic new view of magnetic fields in the Milky Way, in nearby galaxies and clusters, and in the high-redshift Universe.
While gravitation sustains the on-going evolution of the cosmos, it is magnetism that breaks gravitys symmetry and that provides the pathway to the non-thermal Universe. By enabling processes such as anisotropic pressure support, particle acceleratio n, and jet collimation, magnetism has for billions of years regulated the feedback vital for returning matter to the interstellar and intergalactic medium. After reviewing recent results that demonstrate the unique view of magnetic fields provided by radio astronomy, I explain how the Square Kilometre Array will provide data that will reveal what cosmic magnets look like, how they formed, and what role they have played in the evolving Universe.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا