ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-Mach-number turbulence in interstellar gas revealed by radio polarization gradients

73   0   0.0 ( 0 )
 نشر من قبل Bryan Gaensler
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interstellar medium of the Milky Way is multi-phase, magnetized and turbulent. Turbulence in the interstellar medium produces a global cascade of random gas motions, spanning scales ranging from 100 parsecs to 1000 kilometres. Fundamental parameters of interstellar turbulence such as the sonic Mach number (the speed of sound) have been difficult to determine because observations have lacked the sensitivity and resolution to directly image the small-scale structure associated with turbulent motion. Observations of linear polarization and Faraday rotation in radio emission from the Milky Way have identified unusual polarized structures that often have no counterparts in the total radiation intensity or at other wavelengths, and whose physical significance has been unclear. Here we report that the gradient of the Stokes vector (Q,U), where Q and U are parameters describing the polarization state of radiation, provides an image of magnetized turbulence in diffuse ionized gas, manifested as a complex filamentary web of discontinuities in gas density and magnetic field. Through comparison with simulations, we demonstrate that turbulence in the warm ionized medium has a relatively low sonic Mach number, M_s <~ 2. The development of statistical tools for the analysis of polarization gradients will allow accurate determinations of the Mach number, Reynolds number and magnetic field strength in interstellar turbulence over a wide range of conditions.

قيم البحث

اقرأ أيضاً

It is widely accepted that supersonic, magnetised turbulence plays a fundamental role for star formation in molecular clouds. It produces the initial dense gas seeds out of which new stars can form. However, the exact relation between gas compression , turbulent Mach number, and magnetic field strength is still poorly understood. Here, we introduce and test an analytical prediction for the relation between the density variance and the root-mean-square Mach number in supersonic, isothermal, magnetised turbulent flows. We approximate the density and velocity structure of the interstellar medium as a superposition of shock waves. We obtain the density contrast considering the momentum equation for a single magnetised shock and extrapolate this result to the entire cloud. Depending on the field geometry, we then make three different assumptions based on observational and theoretical constraints: B independent of density, B proportional to the root square of the density and B proportional to the density. We test the analytically derived density variance--Mach number relation with numerical simulations, and find that for B proportional to the root square of the density, the variance in the logarithmic density contrast, $sigma_{ln rho/rho_0}^2=ln[1+b^2mathscr{M}^2beta_0/(beta_0+1)]$, fits very well to simulated data with turbulent forcing parameter b=0.4, when the gas is super-Alfvenic. However, this result breaks down when the turbulence becomes trans-Alfvenic or sub-Alfvenic, because in this regime the turbulence becomes highly anisotropic. Our density variance--Mach number relations simplify to the purely hydrodynamic relation as the ratio of thermal to magnetic pressure $beta_0$ approaches infinite.
Interstellar gas heating is a powerful cosmology-independent observable for exploring the parameter space of primordial black holes (PBHs) formed in the early Universe that could constitute part of the dark matter (DM). We provide a detailed analysis of the various aspects for this observable, such as PBH emission mechanisms. Using observational data from the Leo T dwarf galaxy, we constrain the PBH abundance over a broad mass-range, $M_{rm PBH} sim mathcal{O}(1) M_{odot}-10^7 M_{odot}$, relevant for the recently detected gravitational wave signals from intermediate-mass BHs. We also consider PBH gas heating of systems with bulk relative velocity with respect to the DM, such as Galactic clouds.
Radio synchrotron polarization maps of the Galaxy can be used to infer the properties of interstellar turbulence in the diffuse warm ionized medium (WIM). In this paper, we investigate the spatial gradient of linearly polarized synchrotron emission ( $| ablatextbf{P}|/|textbf{P}|$) as a tracer of turbulence, the relationship of the gradient to the sonic Mach number of the WIM, and changes in morphology of the gradient as a function of Galactic position in the southern sky. We use data from the S-band Polarization All Sky Survey (S-PASS) to image the spatial gradient of the linearly polarized synchrotron emission ($| abla textbf{P}|/|textbf{P}|$) of the entire southern sky at $2.3$~GHz. The spatial gradient of linear polarization reveals rapid changes of the density and magnetic fluctuations in the WIM due to magnetic turbulence as a function of Galactic position; we make comparisons of these data to ideal MHD numerical simulations. In order to constrain the sonic Mach number ($M_{s}$), we apply a high order moments analysis to the observations and to the simulated diffuse, isothermal ISM with ideal magneto-hydrodynamic turbulence. We find that polarization gradient maps reveal elongated structures, which we associate with turbulence in the ISM. Our analysis corroborates the view of a turbulent WIM in a transonic regime $M_{s}lesssim 2$. Filamentary structures with typical widths down to the angular resolution are seen and the observed morphologies match closely with numerical simulations and in some cases H$alpha$ contours. The $| abla textbf{P}|/|textbf{P}|$ intensity is found to be approximately log-normal distributed. No systematic variations of the sonic Mach number are observed as a function of Galactic coordinates, which is consistent with turbulence in the WIM inferred by the analysis of H$alpha$ data.
This is the third paper of a series where we study the stellar population gradients (SP; ages, metallicities, $alpha$-element abundance ratios and stellar initial mass functions) of early type galaxies (ETGs) at $zle 0.08$ from the MaNGA-DR15 survey. In this work we focus on the S0 population and quantify how the SP varies across the population as well as with galactocentric distance. We do this by measuring Lick indices and comparing them to stellar population synthesis models. This requires spectra with high signal-to-noise which we achieve by stacking in bins of luminosity (L$_r$) and central velocity dispersion ($sigma_0$). We find that: 1) There is a bimodality in the S0 population: S0s more massive than $3times 10^{10}M_odot$ show stronger velocity dispersion and age gradients (age and $sigma_r$ decrease outwards) but little or no metallicity gradient, while the less massive ones present relatively flat age and velocity dispersion profiles, but a significant metallicity gradient (i.e. [M/H] decreases outwards). Above $2times10^{11}M_odot$ the number of S0s drops sharply. These two mass scales are also where global scaling relations of ETGs change slope. 2) S0s have steeper velocity dispersion profiles than fast rotating elliptical galaxies (E-FRs) of the same luminosity and velocity dispersion. The kinematic profiles and stellar population gradients of E-FRs are both more similar to those of slow rotating ellipticals (E-SRs) than to S0s, suggesting that E-FRs are not simply S0s viewed face-on. 3) At fixed $sigma_0$, more luminous S0s and E-FRs are younger, more metal rich and less $alpha$-enhanced. Evidently for these galaxies, the usual statement that massive galaxies are older is not true if $sigma_0$ is held fixed.
Turbulence is ubiquitous in the insterstellar medium and plays a major role in several processes such as the formation of dense structures and stars, the stability of molecular clouds, the amplification of magnetic fields, and the re-acceleration and diffusion of cosmic rays. Despite its importance, interstellar turbulence, alike turbulence in general, is far from being fully understood. In this review we present the basics of turbulence physics, focusing on the statistics of its structure and energy cascade. We explore the physics of compressible and incompressible turbulent flows, as well as magnetized cases. The most relevant observational techniques that provide quantitative insights of interstellar turbulence are also presented. We also discuss the main difficulties in developing a three-dimensional view of interstellar turbulence from these observations. Finally, we briefly present what could be the the main sources of turbulence in the interstellar medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا