ترغب بنشر مسار تعليمي؟ اضغط هنا

Currently, no light source exists which is both narrow-band and speckle-free with sufficient brightness for full-field imaging applications. Light emitting diodes (LEDs) are excellent spatially incoherent sources, but are tens of nanometers broad. La sers on the other hand can produce very narrow-band light, but suffer from high spatial coherence which leads to speckle patterns which distort the image. Here we propose the use of random Raman laser emission as a new kind of light source capable of providing short-pulsed narrow-band speckle-free illumination for imaging applications.
Propagation of light in a highly scattering medium is among the most fascinating optical effect that everyone experiences on an everyday basis and possesses a number of fundamental problems which have yet to be solved. Conventional wisdom suggests th at non-linear effects do not play a significant role because the diffusive nature of scattering acts to spread the intensity, dramatically weakening these effects. We demonstrate the first experimental evidence of lasing on a Raman transition in a bulk three-dimensional random media. From a practical standpoint, Raman transitions allow for spectroscopic analysis of the chemical makeup of the sample. A random Raman laser could serve as a bright Raman source allowing for remote, chemically specific, identification of powders and aerosols. Fundamentally, the first demonstration of this new light source opens up an entire new field of study into non-linear light propagation in turbid media, with the most notable application related to non-invasive biomedical imaging.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا