ترغب بنشر مسار تعليمي؟ اضغط هنا

Random Raman lasing

195   0   0.0 ( 0 )
 نشر من قبل Brett Hokr
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Propagation of light in a highly scattering medium is among the most fascinating optical effect that everyone experiences on an everyday basis and possesses a number of fundamental problems which have yet to be solved. Conventional wisdom suggests that non-linear effects do not play a significant role because the diffusive nature of scattering acts to spread the intensity, dramatically weakening these effects. We demonstrate the first experimental evidence of lasing on a Raman transition in a bulk three-dimensional random media. From a practical standpoint, Raman transitions allow for spectroscopic analysis of the chemical makeup of the sample. A random Raman laser could serve as a bright Raman source allowing for remote, chemically specific, identification of powders and aerosols. Fundamentally, the first demonstration of this new light source opens up an entire new field of study into non-linear light propagation in turbid media, with the most notable application related to non-invasive biomedical imaging.

قيم البحث

اقرأ أيضاً

Currently, no light source exists which is both narrow-band and speckle-free with sufficient brightness for full-field imaging applications. Light emitting diodes (LEDs) are excellent spatially incoherent sources, but are tens of nanometers broad. La sers on the other hand can produce very narrow-band light, but suffer from high spatial coherence which leads to speckle patterns which distort the image. Here we propose the use of random Raman laser emission as a new kind of light source capable of providing short-pulsed narrow-band speckle-free illumination for imaging applications.
We report on the fabrication of an ultrahigh quality factor, bottle-like microresonator from a microcapillary, and the realization of Raman lasing therein at pump wavelengths of $1.55~mathrm{mu m}$ and $780~mathrm{nm}$. The dependence of the Raman la ser threshold on mode volume is investigated. The mode volume of the fundamental bottle mode is calculated and compared with that of a microsphere. Third-order cascaded Raman lasing was observed when pumped at $780~mathrm{nm}$. In principle, Raman lasing in a hollow bottle-like microresonator can be used in sensing applications. As an example, we briefly discuss the possibility of a high dynamic range, high resolution aerostatic pressure sensor.
We report the first investigation on continuous-wave Raman lasing in high-quality-factor aluminum nitride (AlN) microring resonators. Although wurtzite AlN is known to exhibit six Raman-active phonons, single-mode Raman lasing with low threshold and high slope efficiency is demonstrated. Selective excitation of A$_1^mathrm{TO}$ and E$_2^mathrm{high}$ phonons with Raman shifts of $sim$612 and 660 cm$^{-1}$ is observed by adjusting the polarization of the pump light. A theoretical analysis of Raman scattering efficiency within ${c}$-plane (0001) of AlN is carried out to help account for the observed lasing behavior. Bidirectional lasing is experimentally confirmed as a result of symmetric Raman gain in micro-scale waveguides. Furthermore, second-order Raman lasing with unparalleled output power of $sim$11.3 mW is obtained, which offers the capability to yield higher order Raman lasers for mid-infrared applications.
Chalcogenide glass (ChG) is an attractive material for integrated nonlinear photonics due to its wide transparency and high nonlinearity, and its capability of being directly deposited and patterned on Silicon wafer substrates. It has a singular Rama n effect among amorphous materials. Yet, the Raman lasing performance in high quality and chip integrated ChG microresonators remains unexplored. Here, we demonstrate an engineered Raman lasing dynamic based on home developed photonic integrated high-Q ChG microresonators. With a quality factor above 10^6, we achieve the record-low lasing threshold 3.25 mW among integrated planar photonic platforms. Both the single-mode Raman lasers and a broadband Raman-Kerr comb are observed and characterized, which is dependent on the dispersion of our flexible photonic platform and engineered via tuning the waveguide geometric size. The tunability of such a chipscale Raman laser is also demonstrated through tuning the pump wavelength and tuning the operating temperature on the chip. This allows for the access of single-mode lasing at arbitrary wavelengths in the range 1615-1755 nm. Our results may contribute to the understanding of rich Raman and Kerr nonlinear interactions in dissipative and nonlinear microresonators, and on application aspect, may pave a way to chip-scale efficient Raman lasers that is highly desired in spectroscopic applications in the infrared.
Random lasing is an intriguing phenomenon occurring in disordered structures with optical gain. In such lasers, the scattering of light provides the necessary feedback for lasing action. Because of the light scattering, the random lasing systems emit in all the directions in contrast with the directional emission of the conventional lasers. While this property can be desired in some cases, the control of the emission directionality remains required for most of the applications. Besides, it is well known that the excitation of cavity exciton-polaritons is intrinsically directional. Each wavelength (energy) of the cavity polariton, which is a superposition of an excitonic state and a cavity mode, corresponds to a well-defined propagation direction. We demonstrate in this article that coupling the emission of a 2D random laser with a cavity polaritonic resonance permits to control the direction of emission of the random laser. This results in a directional random lasing whose emission angle with respect to the microcavity axis can be tuned in a large range of angles by varying the cavity detuning. The emission angles reached experimentally in this work are 15.8$^circ$ and 22.4$^circ$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا