ترغب بنشر مسار تعليمي؟ اضغط هنا

`Star G, near the center of the supernova remnant of Tychos SN1572, has been claimed to be the ex-companion star of the exploding white dwarf, thus pointing to the progenitor being like a recurrent nova. This claim has been controversial, but there h ave been no confident proofs or disproofs. Previously, no has seriously addressed the question as to the exact explosion site in 1572. We now provide accurate measures of the supernova position by two radically different methods. Our first method is to use the 42 measured angular distances between the supernova in 1572 and bright nearby stars, with individual measures being as good as 84 arc-seconds, and all resulting in a position with a 1-$sigma$ error radius of 39 arc-seconds (including systematic uncertainties). Our second method is to use a detailed and realistic expansion model for 19 positions around the edge of the remnant, where the swept-up material has measured densities, and we determine the center of expansion with a chi-square fit to the 19 measured radii and velocities. This method has a 1-$sigma$ error radius of 7.5 arc-seconds. Both measures are substantially offset from the geometric center, and both agree closely, proving that neither has any significant systematic errors. Our final combined position for the site of the 1572 explosion is J2000 $alpha$=0h 25m 15.36s, $delta=64^{circ} 8 40.2$, with a 7.3 arc-second 1-sigma uncertainty. Star G is rejected at the 8.2-$sigma$ confidence level. Our new position lies mostly outside the region previously searched for ex-companion stars.
T Pyxidis is the only recurrent nova surrounded by knots of material ejected in previous outbursts. Following the eruption that began on 2011 April 14.29, we obtained seven epochs (from 4 to 383 days after eruption) of Hubble Space Telescope narrowba nd Ha images of T Pyx . The flash of radiation from the nova event had no effect on the ejecta until at least 55 days after the eruption began. Photoionization of hydrogen located north and south of the central star was seen 132 days after the beginning of the eruption. That hydrogen recombined in the following 51 days, allowing us to determine a hydrogen atom density of at least 7e5 cm^-3 - at least an order of magnitude denser than the previously detected, unresolved [NII] knots surrounding T Pyx. Material to the northwest and southeast was photoionized between 132 and 183 days after the eruption began. 99 days later that hydrogen had recombined. Both then (282 days after outburst) and 101 days later, we detected almost no trace of hydrogen emission around T Pyx. There is a large reservoir of previously unseen, cold diffuse hydrogen overlapping the previously detected, [NII] - emitting knots of T Pyx ejecta. The mass of this newly detected hydrogen is probably an order of magnitude larger than that of the [NII] knots. We also determine that there is no significant reservoir of undetected ejecta from the outer boundaries of the previously detected ejecta out to about twice that distance, near the plane of the sky. The lack of distant ejecta is consistent with the Schaefer et al (2010) scenario for T Pyx, in which the star underwent its first eruption within five years of 1866 after many millennia of quiescence, followed by the six observed recurrent nova eruptions since 1890. This lack of distant ejecta is not consistent with scenarios in which T Pyx has been erupting continuously as a recurrent nova for many centuries or millennia.
Although Type Ia supernovae have been heavily scrutinized due to their use in making cosmological distance estimates, we are still unable to definitively identify the progenitors for the entire population. While answers have been presented for certai n specific systems, a complete solution remains elusive. We present observations of two supernova remnants (SNRs) in the Large Magellanic Cloud, SNR 0505-67.9 and SNR 0509-68.7, for which we have identified the center of the remnant and the 99.73% containment central region in which any companion star left over after the supernova must be located. Both remnants have a number of potential ex-companion stars near their centers; all possible single and double degenerate progenitor models remain viable for these two supernovae. Future observations may be able to identify the true ex-companions for both remnants.
Recurrent novae (RNe) are cataclysmic variables with two or more nova eruptions within a century. Classical novae (CNe) are similar systems with only one such eruption. Many of the so-called CNe are actually RNe for which only one eruption has been d iscovered. Since RNe are candidate Type Ia supernova progenitors, it is important to know whether there are enough in our galaxy to provide the supernova rate, and therefore to know how many RNe are masquerading as CNe. To quantify this, we collected all available information on the light curves and spectra of a Galactic, time-limited sample of 237 CNe and the 10 known RNe, as well as exhaustive discovery efficiency records. We recognize RNe as having (a) outburst amplitude smaller than 14.5 - 4.5 * log(t_3), (b) orbital period >0.6 days, (c) infrared colors of J-H > 0.7 mag and H-K > 0.1 mag, (d) FWHM of H-alpha > 2000 km/s, (e) high excitation lines, such as Fe X or He II near peak, (f) eruption light curves with a plateau, and (g) white dwarf mass greater than 1.2 M_solar. Using these criteria, we identify V1721 Aql, DE Cir, CP Cru, KT Eri, V838 Her, V2672 Oph, V4160 Sgr, V4643 Sgr, V4739 Sgr, and V477 Sct as strong RN candidates. We evaluate the RN fraction amongst the known CNe using three methods to get 24% +/- 4%, 12% +/- 3%, and 35% +/- 3%. With roughly a quarter of the 394 known Galactic novae actually being RNe, there should be approximately a hundred such systems masquerading as CNe.
Type Ia supernova (SNe Ia) are thought to originate in the explosion of a white dwarf. The explosion could be triggered by the merger of two white dwarfs (double-degenerate origin), or by mass transfer from a companion star (the single-degenerate pat h). The identity of the progenitor is still controversial; for example, a recent argument against the single-degenerate origin has been widely rejected. One way to distinguish between the double- and single-degenerate progenitors is to look at the center of a known SN Ia remnant to see whether any former companion star is present. A likely ex-companion star for the progenitor of Tychos supernova has been identified, but that claim is still controversial. Here we report that the central region of the supernova remnant SNR 0509-67.5 (the site of a Type Ia supernova 400+-50 years ago, based on its light echo) in the Large Magellanic Cloud contains no ex-companion star to a limit of V=26.9 magnitude (M_V=+8.4) within the extreme 99.73% region with radius 1.43. The lack of any ex-companion star to deep limits rules out all published single-degenerate models. The only remaining possibility is that the progenitor for this particular SN Ia was a double-degenerate system.
The eruption of the recurrent nova U Scorpii on 28 January 2010 is now the all-time best observed nova event. We report 36,776 magnitudes throughout its 67 day eruption, for an average of one measure every 2.6 minutes. This unique and unprecedented c overage is the first time that a nova has any substantial amount of fast photometry. With this, two new phenomena have been discovered: the fast flares in the early light curve seen from days 9-15 (which have no proposed explanation) and the optical dips seen out of eclipse from days 41-61 (likely caused by raised rims of the accretion disk occulting the bright inner regions of the disk as seen over specific orbital phases). The expanding shell and wind cleared enough from days 12-15 so that the inner binary system became visible, resulting in the sudden onset of eclipses and the turn-on of the supersoft X-ray source. On day 15, a strong asymmetry in the out-of-eclipse light points to the existence of the accretion stream. The normal optical flickering restarts on day 24.5. For days 15-26, eclipse mapping shows that the optical source is spherically symmetric with a radius of 4.1 R_sun. For days 26-41, the optical light is coming from a rim-bright disk of radius 3.4 R_sun. For days 41-67, the optical source is a center-bright disk of radius 2.2 R_sun. Throughout the eruption, the colors remain essentially constant. We present 12 eclipse times during eruption plus five just after the eruption.
We present a catalog of 93 very-well-observed nova light curves. The light curves were constructed from 229,796 individual measured magnitudes, with the median coverage extending to 8.0 mag below peak and 26% of the light curves following the eruptio n all the way to quiescence. Our time-binned light curves are presented in figures and as complete tabulations. We also calculate and tabulate many properties about the light curves, including peak magnitudes and dates, times to decline by 2, 3, 6, and 9 magnitudes from maximum, the time until the brightness returns to quiescence, the quiescent magnitude, power law indices of the decline rates throughout the eruption, the break times in this decline, plus many more properties specific to each nova class. We present a classification system for nova light curves based on the shape and the time to decline by 3 magnitudes from peak (t3). The designations are S for smooth light curves (38% of the novae), P for plateaus (21%), D for dust dips (18%), C for cusp-shaped secondary maxima (1%), O for quasi-sinusoidal oscillations superposed on an otherwise smooth decline (4%), F for flat-topped light curves (2%), and J for jitters or flares superposed on the decline (16%). Our classification consists of this single letter followed by the t3 value in parentheses; so for example V1500 Cyg is S(4), GK Per is O(13), DQ Her is D(100), and U Sco is P(3).
We report the discovery by B. G. Harris and S. Dvorak on JD 2455224.9385 (2010 Jan 28.4385 UT) of the predicted eruption of the recurrent nova U Scorpii (U Sco). We also report on 815 magnitudes (and 16 useful limits) on the pre-eruption light curve in the UBVRI and Sloan r and i bands from 2000.4 up to 9 hours before the peak of the January 2010 eruption. We found no significant long-term variations, though we did find frequent fast variations (flickering) with amplitudes up to 0.4 mag. We show that U Sco did not have any rises or dips with amplitude greater than 0.2 mag on timescales from one day to one year before the eruption. We find that the peak of this eruption occurred at JD 2455224.69+-0.07 and the start of the rise was at JD 2455224.32+-0.12. From our analysis of the average B-band flux between eruptions, we find that the total mass accreted between eruptions is consistent with being a constant, in agreement with a strong prediction of nova trigger theory. The date of the next eruption can be anticipated with an accuracy of +-5 months by following the average B-band magnitudes for the next ~10 years, although at this time we can only predict that the next eruption will be in the year 2020+-2.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا