ترغب بنشر مسار تعليمي؟ اضغط هنا

The concept of mass-generation via the Higgs mechanism was strongly inspired by earlier works on the Meissner-Ochsenfeld effect in superconductors. In quantum field theory, the excitations of longitudinal components of the Higgs field manifest as mas sive Higgs bosons. The analogous Higgs mode in superconductors has not yet been observed due to its rapid decay into particle-hole pairs. Following recent theories, however, the Higgs mode should decrease below the pairing gap $2Delta$ and become visible in two-dimensional systems close to the superconductor-insulator transition (SIT). For experimental verification, we measured the complex terahertz transmission and tunneling density of states (DOS) of various thin films of superconducting NbN and InO close to criticality. Comparing both techniques reveals a growing discrepancy between the finite $2Delta$ and the threshold energy for electromagnetic absorption which vanishes critically towards the SIT. We identify the excess absorption below $2Delta$ as a strong evidence of the Higgs mode in two dimensional quantum critical superconductors.
The interplay between disorder and superconductivity has intrigued physicists for decades. Of particular interest is the influence of disorder on the superconducting energy gap $Delta$. In the absence of Coulomb interactions between electrons, disord er leads to emergent granularity of the local order parameter resulting in a pseudogap at temperatures above the critical temperature $T_c$, as well as a finite gap $Delta$ on the insulating side of the disorder-driven superconductor-insulator transition (SIT). At the same time, disorder also enhances the Coulomb interactions, which subsequently may influence $Delta$ in a manner that is still not fully understood. Here we investigate the evolution of the energy gap through the SIT by two different experimental methods: tunneling spectroscopy, in which a metallic electrode is placed close to the studied sample thus screening the Coulomb interactions, and terahertz (THz) spectroscopy, which probes the unscreened sample. The comparison between the two methods illustrates the role played by electronic interactions in determining the nature of the phases across the SIT and sheds light on the mechanisms involved in the destruction of superconductivity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا