ترغب بنشر مسار تعليمي؟ اضغط هنا

169 - Fan Zeng , Wei-Bing Zhang , 2015
First-principle calculations with different exchange-correlation functionals, including LDA, PBE and vdW-DF functional in form of optB88-vdW, have been performed to investigate the electronic and elastic properties of two dimensional transition metal dichalcogenides(TMDCs) with the formula of MX$_2$(M=Mo,W; X=O,S,Se,Te) in both monolayer and bilayer structures. The calculated band structures show a direct band gap for monolayer TMDCs at the K point except for MoO$_2$ and WO$_2$. When the monolayers are stacked into bilayer, the reduced indirect band gaps are found except for bilayer WTe$_2$, in which direct gap is still present at the K point. The calculated in-plane Young moduli are comparable to graphene, which promises the possible application of TMDCs in future flexible and stretchable electronic devices. We also evaluated the performance of different functionals including LDA, PBE, and optB88-vdW in describing elastic moduli of TMDCs and found that LDA seems to be the most qualified method. Moreover, our calculations suggest that the Young moduli for bilayers are insensitive to stacking orders and the mechanical coupling between monolayers seems to be negligible.
The external forward shock (EFS) models have been the standard paradigm to interpret the broad-band afterglow data of gamma-ray bursts (GRBs). One prediction of the models is that some afterglow temporal breaks at different energy bands should be ach romatic. Observations in the Swift era have revealed chromatic afterglow behaviors at least in some GRBs, casting doubts on the EFS origin of GRB afterglows. In this paper, we perform a systematic study to address the question: how bad/good are the external forward shock models? Our sample includes 85 GRBs well-monitored X-ray and optical lightcurves. Based on how well the data abide by the EFS models, we categorize them as: Gold sample: (Grade I and II) include 45/85 GRBs. They show evidence of, or are consistent with having, an achromatic break. The temporal/spectral behaviors in each afterglow segment are consistent with the predictions (closure relations) of the EFS models. Silver sample: (Grade III and IV) include 37/85 GRBs. They are also consistent with having an achromatic break, even though one or more afterglow segments do not comply with the closure relations. Bad sample: (Grade V), 3/85 shows direct evidence of chromatic behaviors, suggesting that the EFS models are inconsistent with the data. These are included in the Bad sample. We further perform statistical analyses of various observational properties ($alpha$, $beta$, $t_b$ and model parameters (energy injection index q, p, $theta_j$, $eta_gamma$, etc) of the GRBs in the Gold Sample, and derive constraints on the magnetization parameter $epsilon_B$ in the EFS. Overall, we conclude that the simplest EFS models can account for the multi-wavelength afterglow data of at least half of the GRBs. When more advanced modeling (e.g., long-lasting reverse shock, structured jets) is invoked, up to $>90 %$ of the afterglows may be interpreted within the framework of the ESF models.
The double burst, GRB 110709B, triggered Swift/BAT twice at 21:32:39 UT and 21:43:45 UT, respectively, on 9 July 2011. This is the first time we observed a GRB with two BAT triggers. In this paper, we present simultaneous Swift and Konus-WIND observa tions of this unusual GRB and its afterglow. If the two events originated from the same physical progenitor, their different time-dependent spectral evolution suggests they must belong to different episodes of the central engine, which may be a magnetar-to-BH accretion system.
117 - Kentaro Nagamine 2008
We study the incidence rate of damped Ly-a systems associated with the host galaxies of gamma-ray bursts (GRB-host-DLAs) as functions of neutral hydrogen column density (N_HI) and projected star formation rate (SFR) using cosmological SPH simulations . Assuming that the occurrence of GRBs is correlated with the local SFR, we find that the median N_HI of GRB-host-DLAs progressively shifts to lower N_HI values with increasing redshift, and the incidence rate of GRB-host-DLAs with log N_HI > 21.0 decreases rapidly at z>=6. Our results suggest that the likelihood of observing the signature of IGM attenuation in GRB afterglows increases towards higher redshift, because it will not be blocked by the red damping wing of DLAs in the GRB host galaxies. This enhances the prospects of using high-redshift GRBs to probe the reionization history of the Universe. The overall incidence rate of GRB-host-DLAs decreases monotonically with increasing redshift, whereas that of QSO-DLAs increases up to z=6. A measurement of the difference between the two incidence rates would enable an estimation of the value of eta_grb, which is the mass fraction of stars that become GRBs for a given amount of star formation. Our predictions can be tested by upcoming high-z GRB missions, including JANUS (Joint Astrophysics Nascent Universe Scout) and SVOM (Space multi-band Variable Object Monitor).
We use the Boer-Mulders functions parameterized from unpolarized $p+D$ Drell-Yan data by the FNAL E866/NuSea Collaboration combined with recently extracted Collins functions to calculate the $cos 2 phi$ asymmetries in unpolarized semi-inclusive deepl y inelastic scattering (SIDIS) processes both for ZEUS at Hadron Electron Ring Accelerator (HERA) and Jefferson Lab experiments (JLab), and to compare our results with their data. We also give predictions for the $cos 2 phi$ asymmetries of SIDIS in the kinematical regime of HERMES Collaboration, and the forthcoming JLab experiments. We predict that the $cos 2 phi$ asymmetries of semi-inclusive $pi^-$ production are somewhat larger than that of $pi^+$ production. We suggest to measure these two processes separately, which will provide more detail information on the Boer-Mulders functions as well as on the Collins functions.
Based on First-principles calculation, we have investigated electronic structure of a ZrCuSiAs structured superconductor LaNiPO. The density of states, band structures and Fermi surfaces have been given in detail. Our results indicate that the bondin g of the La-O and Ni-P is strongly covalent whereas binding property between the LaO and NiP blocks is mostly ionic. Its also found that four bands are across the Fermi level and the corresponding Fermi surfaces all have a two-dimensional character. In addition, we also give the band decomposed charge density, which suggests that orbital components of Fermi surfaces are more complicated than cuprate superconductors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا