ترغب بنشر مسار تعليمي؟ اضغط هنا

Computationally-efficient semilocal approximations of density functional theory at the level of the local spin density approximation (LSDA) or generalized gradient approximation (GGA) poorly describe weak interactions. We show improved descriptions f or weak bonds (without loss of accuracy for strong ones) from a newly-developed semilocal meta-GGA (MGGA), by applying it to molecules, surfaces, and solids. We argue that this improvement comes from using the right MGGA dimensionless ingredient to recognize all types of orbital overlap.
We present a global hybrid meta-generalized gradient approximation (meta-GGA) with three empirical parameters, as well as its underlying semilocal meta-GGA and a meta-GGA with only one empirical parameter. All of them are based on the new meta-GGA re sulting from the understanding of kinetic-energy-density dependence [J. Chem. Phys. 137, 051101 (2012)]. The obtained functionals show robust performances on the considered molecular systems for the properties of heats of formation, barrier heights, and noncovalent interactions. The pair-wise additive dispersion corrections to the functionals are also presented.
82 - Jianwei Sun , Bing Xiao , 2012
The semilocal meta generalized gradient approximation (MGGA) for the exchange-correlation functional of Kohn-Sham (KS) density functional theory can yield accurate ground-state energies simultaneously for atoms, molecules, surfaces, and solids, due t o the inclusion of kinetic energy density as an input. We study for the first time the effect and importance of the dependence of MGGA on the kinetic energy density through the dimensionless inhomogeneity parameter, $alpha$, that characterizes the extent of orbital overlap. This leads to a simple and wholly new MGGA exchange functional, which interpolates between the single-orbital regime, where $alpha=0$, and the slowly varying density regime, where $alpha approx 1$, and then extrapolates to $alpha to infty$. When combined with a variant of the Perdew-Burke-Erzerhof (PBE) GGA correlation, the resulting MGGA performs equally well for atoms, molecules, surfaces, and solids.
70 - HongSheng Zhao 2008
The tight correlation between galaxy bulges and their central black hole masses likely emerges in a phase of rapid collapse and starburst at high redshift, due to the balance of gravity on gas with the feedback force from starbursts and the wind from the black hole; the average gravity on per unit mass of gas is ~ 2 x 10^-10 m/sec^2 during the star burst phase. This level of gravity could come from the real r^{-1} cusps of Cold Dark Matter (CDM) halos, but the predicted gravity would have a large scatter due to dependence on cosmological parameters and formation histories. Better agreement is found with the gravity from the scalar field in some co-varia
Based on First-principles calculation, we have investigated electronic structure of a ZrCuSiAs structured superconductor LaNiPO. The density of states, band structures and Fermi surfaces have been given in detail. Our results indicate that the bondin g of the La-O and Ni-P is strongly covalent whereas binding property between the LaO and NiP blocks is mostly ionic. Its also found that four bands are across the Fermi level and the corresponding Fermi surfaces all have a two-dimensional character. In addition, we also give the band decomposed charge density, which suggests that orbital components of Fermi surfaces are more complicated than cuprate superconductors.
155 - HongSheng Zhao 2007
Gravity is nearly a universal constant in the cusp of an NFW galaxy halo. Inside this external field an isothermal gas sphere will collapse and trigger a starburst if above a critical central pressure. Thus formed spheroidal stellar systems have Sers ic-profile and satisfy the Faber-Jackson relation. The process is consistent with observed starbursts. We also recover the M_BH vs. velocity dispersion relation, if the gas collapse is regulated or resisted by the feedback from radiation from the central BH.
We present a feedback compression model to describe the galactic spheroid formation and its relation with the central nuclear activity. We suggest that the star formation itself can serve as the positive feedback in some extremely dense region to tri gger the starburst. The star formation rate as well as the related stellar feedback-induced turbulence will be maximized under the regulation of the background dark halos gravity. There is also stellar feedback acting inward to confine and obscure the central black hole (BH) till the BH grows sufficiently large to satisfy a balance condition between the accretion disk wind and the inward stellar feedback. The extremely vigorous star formation activity, the BH - bulge relations, the maximum velocity dispersion as well as the maximum BH mass are investigated based on such scenario, and are found to be consistent with observations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا