ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a description for setting initial particle displacements and field values for simulations of arbitrary metric theories of gravity, for perfect and imperfect fluids with arbitrary characteristics. We extend the Zeldovich Approximation to no ntrivial theories of gravity, and show how scale dependence implies curved particle paths, even in the entirely linear regime of perturbations. For a viable choice of Effective Field Theory of Modified Gravity, initial conditions set at high redshifts are affected at the level of up to 5% at Mpc scales, which exemplifies the importance of going beyond {Lambda}-Cold Dark Matter initial conditions for modifications of gravity outside of the quasi-static approximation. In addition, we show initial conditions for a simulation where a scalar modification of gravity is modelled in a Lagrangian particle-like description. Our description paves the way for simulations and mock galaxy catalogs under theories of gravity beyond the standard model, crucial for progress towards precision tests of gravity and cosmology.
We have carried out car-following experiments with a 25-car-platoon on an open road section to study the relation between a cars speed and its spacing under various traffic conditions, in the hope to resolve a controversy surrounding this fundamental relation of vehicular traffic. In this paper we extend our previous analysis of these experiments, and report new experimental findings. In particular, we reveal that the platoon length (hence the average spacing within a platoon) might be significantly different even if the average velocity of the platoon is essentially the same. The findings further demonstrate that the traffic states span a 2D region in the speed-spacing (or density) plane. The common practice of using a single speed-spacing curve to model vehicular traffic ignores the variability and imprecision of human driving and is therefore inadequate. We have proposed a car-following model based on a mechanism that in certain ranges of speed and spacing, drivers are insensitive to the changes in spacing when the velocity differences between cars are small. It was shown that the model can reproduce the experimental results well.
We continue the study of mild transient reductions in the speed of sound of the adiabatic mode during inflation, of their effect on the primordial power spectrum and bispectrum, and of their detectability in the Cosmic Microwave Background (CMB). We focus on the regime of emph{moderately sharp} mild reductions in the speed of sound during uninterrupted slow-roll inflation, a theoretically well motivated and self-consistent regime that admits an effective single-field description. The signatures on the power spectrum and bispectrum were previously computed using a slow-roll Fourier transform (SRFT) approximation, and here we compare it with generalized slow-roll (GSR) and in-in methods, for which we derive new formulas that account for moderately sharp features. The agreement between them is excellent, and also with the power spectrum obtained from the numerical solution to the equation of motion. We show that, in this regime, the SRFT approximation correctly captures with simplicity the effect of higher derivatives of the speed of sound in the mode equation, and makes manifest the correlations between power spectrum and bispectrum features. In a previous paper we reported hints of these correlations in the Planck data and here we perform several consistency checks and further analyses of the best fits, such as polarization and local significance at different angular scales. For the data analysis, we show the excellent agreement between the CLASS and CAMB Boltzmann codes. Our results confirm that the theoretical framework is consistent, and they suggest that the predicted correlations are robust enough to be searched for in CMB and Large Scale Structure (LSS) surveys.
As a typical self-driven many-particle system far from equilibrium, traffic flow exhibits diverse fascinating non-equilibrium phenomena, most of which are closely related to traffic flow stability and specifically the growth/dissipation pattern of di sturbances. However, the traffic theories have been controversial due to a lack of precise traffic data. We have studied traffic flow from a new perspective by carrying out large-scale car-following experiment on an open road section, which overcomes the intrinsic deficiency of empirical observations. The experiment has shown clearly the nature of car-following, which runs against the traditional traffic flow theory. Simulations show that by removing the fundamental notion in the traditional car-following models and allowing the traffic state to span a two-dimensional region in velocity-spacing plane, the growth pattern of disturbances has changed qualitatively and becomes qualitatively or even quantitatively in consistent with that observed in the experiment.
140 - Seoktae Koh , Bin Hu 2009
We study the dynamics of a timelike vector field which violates Lorentz invariance when the background spacetime is in an accelerating phase in the early universe. It is shown that a timelike vector field is difficult to realize an inflationary phase , so we investigate the evolution of a vector field within a scalar field driven inflation model. And we calculate the power spectrum of the vector field without considering the metric perturbations. While the time component of the vector field perturbations provides a scale invariant spectrum when $xi = 0$, where $xi$ is a nonminimal coupling parameter, both the longitudinal and transverse perturbations give a scale invariant spectrum when $xi = 1/6$.
We study the effect of the Gauss-Bonnet term on vacuum decay process in the Coleman-De Luccia formalism. The Gauss-Bonnet term has an exponential coupling with the real scalar field, which appears in the low energy effective action of string theories . We calculate numerically the instanton solution, which describes the process of vacuum decay, and obtain the critical size of bubble. We find that the Gauss-Bonnet term has a nontrivial effect on the false vacuum decay, depending on the Gauss-Bonnet coefficient.
In this paper we investigate the equilibrium self-gravitating radiation in higher dimensional, plane symmetric anti-de Sitter space. We find that there exist essential differences from the spherically symmetric case: In each dimension ($dgeq 4$), the re are maximal mass (density), maximal entropy (density) and maximal temperature configurations, they do not appear at the same central energy density; the oscillation behavior appearing in the spherically symmetric case, does not happen in this case; and the mass (density), as a function of the central energy density, increases first and reaches its maximum at a certain central energy density and then decreases monotonically in $ 4le d le 7$, while in $d geq 8$, besides the maximum, the mass (density) of the equilibrium configuration has a minimum: the mass (density) first increases and reaches its maximum, then decreases to its minimum and then increases to its asymptotic value monotonically. The reason causing the difference is discussed.
In this paper, urban traffic is modeled using dual graph representation of urban transportation network where roads are mapped to nodes and intersections are mapped to links. The proposed model considers both the navigation of vehicles on the network and the motion of vehicles along roads. The roads capacity and the vehicle-turning ability at intersections are naturally incorporated in the model. The overall capacity of the system can be quantified by a phase transition from free flow to congestion. Simulation results show that the systems capacity depends greatly on the topology of transportation networks. In general, a well-planned grid can hold more vehicles and its overall capacity is much larger than that of a growing scale-free network.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا