ترغب بنشر مسار تعليمي؟ اضغط هنا

The graph reconstruction conjecture asserts that every finite simple graph on at least three vertices can be reconstructed up to isomorphism from its deck - the collection of its vertex-deleted subgraphs. Kocays Lemma is an important tool in graph re construction. Roughly speaking, given the deck of a graph $G$ and any finite sequence of graphs, it gives a linear constraint that every reconstruction of $G$ must satisfy. Let $psi(n)$ be the number of distinct (mutually non-isomorphic) graphs on $n$ vertices, and let $d(n)$ be the number of distinct decks that can be constructed from these graphs. Then the difference $psi(n) - d(n)$ measures how many graphs cannot be reconstructed from their decks. In particular, the graph reconstruction conjecture is true for $n$-vertex graphs if and only if $psi(n) = d(n)$. We give a framework based on Kocays lemma to study this discrepancy. We prove that if $M$ is a matrix of covering numbers of graphs by sequences of graphs, then $d(n) geq mathsf{rank}_mathbb{R}(M)$. In particular, all $n$-vertex graphs are reconstructible if one such matrix has rank $psi(n)$. To complement this result, we prove that it is possible to choose a family of sequences of graphs such that the corresponding matrix $M$ of covering numbers satisfies $d(n) = mathsf{rank}_mathbb{R}(M)$.
In this paper we investigate an extremal problem on binary phylogenetic trees. Given two such trees $T_1$ and $T_2$, both with leaf-set ${1,2,...,n}$, we are interested in the size of the largest subset $S subseteq {1,2,...,n}$ of leaves in a common subtree of $T_1$ and $T_2$. We show that any two binary phylogenetic trees have a common subtree on $Omega(sqrt{log{n}})$ leaves, thus improving on the previously known bound of $Omega(loglog n)$ due to M. Steel and L. Szekely. To achieve this improved bound, we first consider two special cases of the problem: when one of the trees is balanced or a caterpillar, we show that the largest common subtree has $Omega(log n)$ leaves. We then handle the general case by proving and applying a Ramsey-type result: that every binary tree contains either a large balanced subtree or a large caterpillar. We also show that there are constants $c, alpha > 0$ such that, when both trees are balanced, they have a common subtree on $c n^alpha$ leaves. We conjecture that it is possible to take $alpha = 1/2$ in the unrooted case, and both $c = 1$ and $alpha = 1/2$ in the rooted case.
Pedigrees are directed acyclic graphs that represent ancestral relationships between individuals in a population. Based on a schematic recombination process, we describe two simple Markov models for sequences evolving on pedigrees - Model R (recombin ations without mutations) and Model RM (recombinations with mutations). For these models, we ask an identifiability question: is it possible to construct a pedigree from the joint probability distribution of extant sequences? We present partial identifiability results for general pedigrees: we show that when the crossover probabilities are sufficiently small, certain spanning subgraph sequences can be counted from the joint distribution of extant sequences. We demonstrate how pedigrees that earlier seemed difficult to distinguish are distinguished by counting their spanning subgraph sequences.
Tuffley and Steel (1997) proved that Maximum Likelihood and Maximum Parsimony methods in phylogenetics are equivalent for sequences of characters under a simple symmetric model of substitution with no common mechanism. This result has been widely cit ed ever since. We show that small changes to the model assumptions suffice to make the two methods inequivalent. In particular, we analyze the case of bounded substitution probabilities as well as the molecular clock assumption. We show that in these cases, even under no common mechanism, Maximum Parsimony and Maximum Likelihood might make conflicting choices. We also show that if there is an upper bound on the substitution probabilities which is `sufficiently small, every Maximum Likelihood tree is also a Maximum Parsimony tree (but not vice versa).
In this paper we investigate mathematical questions concerning the reliability (reconstruction accuracy) of Fitchs maximum parsimony algorithm for reconstructing the ancestral state given a phylogenetic tree and a character. In particular, we conside r the question whether the maximum parsimony method applied to a subset of taxa can reconstruct the ancestral state of the root more accurately than when applied to all taxa, and we give an example showing that this indeed is possible. A surprising feature of our example is that ignoring a taxon closer to the root improves the reliability of the method. On the other hand, in the case of the two-state symmetric substitution model, we answer affirmatively a conjecture of Li, Steel and Zhang which states that under a molecular clock the probability that the state at a single taxon is a correct guess of the ancestral state is a lower bound on the reconstruction accuracy of Fitchs method applied to all taxa.
A pedigree is a directed graph that describes how individuals are related through ancestry in a sexually-reproducing population. In this paper we explore the question of whether one can reconstruct a pedigree by just observing sequence data for prese nt day individuals. This is motivated by the increasing availability of genomic sequences, but in this paper we take a more theoretical approach and consider what models of sequence evolution might allow pedigree reconstruction (given sufficiently long sequences). Our results complement recent work that showed that pedigree reconstruction may be fundamentally impossible if one uses just the degrees of relatedness between different extant individuals. We find that for certain stochastic processes, pedigrees can be recovered up to isomorphism from sufficiently long sequences.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا