ترغب بنشر مسار تعليمي؟ اضغط هنا

Exfoliated chromium triiodide (CrI$_3$) is a layered van der Waals (vdW) magnetic insulator that consists of ferromagnetic layers coupled through antiferromagnetic interlayer exchange. The resulting permutations of magnetic configurations combined wi th the underlying crystal symmetry produces tunable magneto-optical phenomena that is unique to the two-dimensional (2D) limit. Here, we report the direct observation of 2D magnons through magneto-Raman spectroscopy with optical selection rules that are strictly determined by the honeycomb lattice and magnetic states of atomically thin CrI$_3$. In monolayers, we observe an acoustic magnon mode of ~0.3 meV with cross-circularly polarized selection rules locked to the magnetization direction. These unique selection rules arise from the discrete conservation of angular momentum of photons and magnons dictated by threefold rotational symmetry in a rotational analogue to Umklapp scattering. In bilayers, by tuning between the layered antiferromagnetic and ferromagnetic-like states, we observe the switching of two magnon modes. The bilayer structure also enables Raman activity from the optical magnon mode at ~17 meV (~4.2 THz) that is otherwise Raman-silent in the monolayer. From these measurements, we quantitatively extract the spin wave gap, magnetic anisotropy, intralayer and interlayer exchange constants, and establish 2D magnets as a new system for exploring magnon physics.
The coupling between spin and charge degrees of freedom in a crystal imparts strong optical signatures on scattered electromagnetic waves. This has led to magneto-optical effects with a host of applications, from the sensitive detection of local magn etic order to optical modulation and data storage technologies. Here, we demonstrate a new magneto-optical effect, namely, the tuning of inelastically scattered light through symmetry control in atomically thin chromium triiodide (CrI$_3$). In monolayers, we found an extraordinarily large magneto-optical Raman effect from an A$_{1g}$ phonon mode due to the emergence of ferromagnetic order. The linearly polarized, inelastically scattered light rotates by ~40$^o$, more than two orders of magnitude larger than the rotation from MOKE under the same experimental conditions. In CrI$_3$ bilayers, we show that the same A$_{1g}$ phonon mode becomes Davydov-split into two modes of opposite parity, exhibiting divergent selection rules that depend on inversion symmetry and the underlying magnetic order. By switching between the antiferromagnetic states and the fully spin-polarized states with applied magnetic and electric fields, we demonstrate the magnetoelectrical control over their selection rules. Our work underscores the unique opportunities provided by 2D magnets for controlling the combined time-reversal and inversion symmetries to manipulate Raman optical selection rules and for exploring emergent magneto-optical effects and spin-phonon coupled physics.
Monolayer valley semiconductors, such as tungsten diselenide (WSe$_2$), possess valley pseudospin degrees of freedom that are optically addressable but degenerate in energy. Lifting the energy degeneracy by breaking time-reversal symmetry is vital fo r valley manipulation. This has been realized by directly applying magnetic fields or via pseudo-magnetic fields generated by intense circularly polarized optical pulses. However, sweeping large magnetic fields is impractical for devices, and the pseudo-magnetic fields are only effective in the presence of ultrafast laser pulses. The recent rise of two-dimensional (2D) magnets unlocks new approaches to control valley physics via van der Waals heterostructure engineering. Here we demonstrate wide continuous tuning of the valley polarization and valley Zeeman splitting with small changes in the laser excitation power in heterostructures formed by monolayer WSe$_2$ and 2D magnetic chromium triiodide (CrI$_3$). The valley manipulation is realized via optical control of the CrI$_3$magnetization, which tunes the magnetic exchange field over a range of 20 T. Our results reveal a convenient new path towards optical control of valley pseudospins and van der Waals magnetic heterostructures.
Recent discoveries of intrinsic two-dimensional (2D) ferromagnetism in insulating/semiconducting van der Waals (vdW) crystals open up new possibilities for studying fundamental 2D magnetism and devices employing localized spins. However, a vdW materi al that exhibits 2D itinerant magnetism remains elusive. In fact, the synthesis of such single-crystal ferromagnetic metals with strong perpendicular anisotropy at the atomically thin limit has been a long-standing challenge. Here, we demonstrate that monolayer Fe3GeTe2 is a robust 2D itinerant ferromagnet with strong out-of-plane anisotropy. Layer-dependent studies reveal a crossover from 3D to 2D Ising ferromagnetism for thicknesses less than 4 nm (five layers), accompanying a fast drop of the Curie temperature from 207 K down to 130 K in the monolayer. For Fe3GeTe2 flakes thicker than ~15 nm, a peculiar magnetic behavior emerges within an intermediate temperature range, which we show is due to the formation of labyrinthine domain patterns. Our work introduces a novel atomically thin ferromagnetic metal that could be useful for the study of controllable 2D itinerant Ising ferromagnetism and for engineering spintronic vdW heterostructures.
The challenge of controlling magnetism using electric fields raises fundamental questions and addresses technological needs such as low-dissipation magnetic memory. The recently reported two-dimensional (2D) magnets provide a new system for studying this problem owing to their unique magnetic properties. For instance, bilayer chromium triiodide (CrI3) behaves as a layered antiferromagnet with a magnetic field-driven metamagnetic transition. Here, we demonstrate electrostatic gate control of magnetism in CrI3 bilayers, probed by magneto-optical Kerr effect (MOKE) microscopy. At fixed magnetic fields near the metamagnetic transition, we realize voltage-controlled switching between antiferromagnetic and ferromagnetic states. At zero magnetic field, we demonstrate a time-reversal pair of layered antiferromagnetic states which exhibit spin-layer locking, leading to a remarkable linear dependence of their MOKE signals on gate voltage with opposite slopes. Our results pave the way for exploring new magnetoelectric phenomena and van der Waals spintronics based on 2D materials.
Since the celebrated discovery of graphene, the family of two-dimensional (2D) materials has grown to encompass a broad range of electronic properties. Recent additions include spin-valley coupled semiconductors, Ising superconductors that can be tun ed into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semi-metals with edge transport. Despite this progress, there is still no 2D crystal with intrinsic magnetism, which would be useful for many technologies such as sensing, information, and data storage. Theoretically, magnetic order is prohibited in the 2D isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. However, magnetic anisotropy removes this restriction and enables, for instance, the occurrence of 2D Ising ferromagnetism. Here, we use magneto-optical Kerr effect (MOKE) microscopy to demonstrate that monolayer chromium triiodide (CrI3) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 K is only slightly lower than the 61 K of the bulk crystal, consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phase transition, showcasing the hallmark thickness-dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI3 displays suppressed magnetization with a metamagnetic effect, while in trilayer the interlayer ferromagnetism observed in the bulk crystal is restored. Our work creates opportunities for studying magnetism by harnessing the unique features of atomically-thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering for novel interface phenomena.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا