ترغب بنشر مسار تعليمي؟ اضغط هنا

93 - Bernd R. Schuh 2014
A heuristic model procedure for determining satisfiability of CNF-formulae is set up and described by nonlinear recursion relations for m (number of clauses), n (number of variables) and clause filling k. The system mimicked by the recursion undergoe s a sharp transition from bounded running times (easy) to uncontrolled runaway behaviour (hard). Thus the parameter space turns out to be separated into regions with qualitatively different efficiency of the model procedure. The transition results from a competition of exponential blow up by branching versus growing number of orthogonal clauses.
223 - Bernd R. Schuh 2014
The aim of this short note is mainly pedagogical. It summarizes some knowledge about Boolean satisfiability (SAT) and the P=NP? problem in an elementary mathematical language. A convenient scheme to visualize and manipulate CNF formulae is introduced . Also some results like the formulae for the number of unsatisfied clauses and the number of solutions might be unknown.
106 - Bernd R. Schuh 2012
For random CNF formulae with m clauses, n variables and an unrestricted number of literals per clause the transition from high to low satisfiability can be determined exactly for large n. The critical density m/n turns out to be strongly n-dependent, ccr = ln(2)/(1-p)^^n, where pn is the mean number of positive literals per clause.This is in contrast to restricted random SAT problems (random K-SAT), where the critical ratio m/n is a constant. All transition lines are calculated by the second moment method applied to the number of solutions N of a formula. In contrast to random K-SAT, the method does not fail for the unrestricted model, because long range interactions between solutions are not cut off by disorder.
93 - Bernd R. Schuh 2010
Whether the satisfiability of any formula F of propositional calculus can be determined in polynomial time is an open question. I propose a simple procedure based on some real world mechanisms to tackle this problem. The main result is the blueprint for a machine which is able to test any formula in conjunctive normal form (CNF) for satisfiability in linear time. The device uses light and some electrochemical properties to function. It adapts itself to the scope of the problem without growing exponentially in mass with the size of the formula. It requires infinite precision in its components instead.
80 - Bernd R. Schuh 2009
For formulas F of propositional calculus I introduce a metavariable MF and show how it can be used to define an algorithm for testing satisfiability. MF is a formula which is true/false under all possible truth assignments iff F is satisfiable/unsati sfiable. In this sense MF is a metavariable with the meaning F is SAT. For constructing MF a group of transformations of the basic variables ai is used which corresponds to flipping literals to their negation. The whole procedure corresponds to branching algorithms where a formula is split with respect to the truth values of its variables, one by one. Each branching step corresponds to an approximation to the metatheorem which doubles the chance to find a satisfying truth assignment but also doubles the length of the formulas to be tested, in principle. Simplifications arise by additional length reductions. I also discuss the notion of logical primes and show that each formula can be written as a uniquely defined product of such prime factors. Satisfying truth assignments can be found by determining the missing primes in the factorization of a formula.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا