ترغب بنشر مسار تعليمي؟ اضغط هنا

CaII 3934,3969 absorbers, which are likely to be a subset of damped Lyman alpha systems, are the most dusty quasar absorbers known, with an order of magnitude more extinction in E(B-V) than other absorption systems. There is also evidence that CaII a bsorbers trace galaxies with more ongoing star-formation than the average quasar absorber. Despite this, relatively little is known in detail about these unusual absorption systems. Here we present the first high resolution spectroscopic study of 19 CaII quasar absorbers, in the range 0.6<= z_abs<=1.2, with W3934>=0.2A. Their general depletion patterns are similar to measurements in the warm halo phase of the Milky Way and Magellanic Clouds ISM. Dust depletions and alpha-enrichments profiles of sub-samples of 7 and 3 absorbers, respectively, are measured using a combination of Voigt profile fitting and apparent optical depth techniques. Deviations in [Cr/Zn]~0.3+-0.1dex and in [Si/Fe]>~0.8+-0.1dex are detected across the profile of one absorber, which we attribute to differential dust depletion. The remaining absorbers have <0.3dex (3sigma limit) variation in [Cr/Zn], much like the general DLA population, though the dustiest CaII absorbers remain relatively unprobed in our sample. A limit on electron densities in CaII absorbers, n_e<0.1cm^-3, is derived using the ratio of neutral and singly ionised species, assuming a MW-like radiation field. These electron densities may imply hydrogen densities sufficient for the presence of molecular hydrogen in the absorbers. The CaII absorber sample comprises a wide range of velocity widths, v_90=50-470km/s, and velocity structures, thus a range of physical models for their origin, from simple discs to galactic outflows and mergers, would be required to explain the observations.
The most metal-poor DLA known to date, at z = 2.61843 in the spectrum of the QSO Q0913+072, with an oxygen abundance only about 1/250 of the solar value, shows six well resolved D I Lyman series transitions in high quality echelle spectra recently ob tained with the ESO VLT. We deduce a value of the deuterium abundance log (D/H) = -4.56+/-0.04 which is in good agreement with four out of the six most reliable previous determinations of this ratio in QSO absorbers. We find plausible reasons why in the other two cases the 1 sigma errors may have been underestimated by about a factor of two. The addition of this latest data point does not change significantly the mean value of the primordial abundance of deuterium, suggesting that we are now converging to a reliable measure of this quantity. We conclude that <log (D/H)_p> = -4.55+/-0.03 and Omega_b h^2 (BBN) = 0.0213+/-0.0010 (68% confidence limits). Including the latter as a prior in the analysis of the five year data of WMAP leads to a revised best-fitting value of the power-law index of primordial fluctuations n_s = 0.956+/-0.013 (1 sigma) and n_s < 0.990 with 99% confidence. Considering together the constraints provided by WMAP 5, (D/H)_p, baryon oscillations in the galaxy distribution, and distances to Type Ia supernovae, we arrive at the current best estimates Omega_b h^2 = 0.0224+/-0.0005 and n_s = 0.959+/-0.013.
This study focuses on some of the most metal-poor damped Lyman alpha absorbers known in the spectra of high redshift QSOs, using new and archival observations obtained with UV-sensitive echelle spectrographs on the Keck and VLT telescopes. The weakne ss and simple velocity structure of the absorption lines in these systems allows us to measure the abundances of several elements, and in particular those of C, N, and O, a group that is difficult to study in DLAs of more typical metallicities. We find that when the oxygen abundance is less than about 1/100 of solar, the C/O ratio in high redshift DLAs and sub-DLAs matches that of halo stars of similar metallicity and shows higher values than expected from galactic chemical evolution models based on conventional stellar yields. Furthermore, there are indications that at these low metallicities the N/O ratio may also be above simple expectations and may exhibit a minimum value, as proposed by Centurion and her collaborators in 2003. Both results can be interpreted as evidence for enhanced production of C and N by massive stars in the first few episodes of star formation, in our Galaxy and in the distant proto-galaxies seen as QSO absorbers. The higher stellar yields implied may have an origin in stellar rotation which promotes mixing in the stars interiors, as considered in some recent model calculations. We briefly discuss the relevance of these results to current ideas on the origin of metals in the intergalactic medium and the universality of the stellar initial mass function.
We present new imaging and spectroscopic observations of the fields of five QSOs with very strong intervening CaII absorption systems at redshifts z<0.5 selected from the Sloan Digital Sky Survey. Recent studies of these very rare absorbers indicate that they may be related to damped Lyman alpha systems (DLAs). In all five cases we identify a galaxy at the redshift of the CaII system with impact parameters up to ~24 kpc. In four out of five cases the galaxies are luminous (L ~L*), metal-rich (Z ~Zsun), massive (velocity dispersion, sigma ~100 km/s) spirals. Their star formation rates, deduced from Halpha emission, are high, in the range SFR = 0.3 - 30 Msun/yr. In our analysis, we paid particular attention to correcting the observed emission line fluxes for stellar absorption and dust extinction. We show that these effects are important for a correct SFR estimate; their neglect in previous low-z studies of DLA-selected galaxies has probably led to an underestimate of the star formation activity in at least some DLA hosts. We discuss possible links between CaII-selected galaxies and DLAs and outline future observations which will help clarify the relationship between these different classes of QSO absorbers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا