ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlling the quadrature measured by a homodyne detector is a universal task in continuous-variable quantum optics. However, deriving an error signal that is linear across theentire range of quadrature angles remains an open experimental problem. H ere we propose a scheme to produce such an error signal through the use of a universally tunable modulator.
We present the experimental observation of an optical spring without the use of an optical cavity. The optical spring is produced by interference at a beamsplitter and, in principle, does not have the damping force associated with optical springs cre ated in detuned cavities. The experiment consists of a Michelson-Sagnac interferometer (with no recycling cavities) with a partially reflective GaAs microresonator as the beamsplitter that produces the optical spring. Our experimental measurements at input powers of up to 360 mW show the shift of the optical spring frequency as a function of power and are in excellent agreement with theoretical predictions. In addition, we show that the optical spring is able to keep the interferometer stable and locked without the use of external feedback.
The primary objective of the Beyond Einstein Advanced Coherent Optical Network (BEACON) mission is a search for new physics beyond general relativity by measuring the curvature of relativistic space-time around Earth. This curvature is characterized by the Eddington parameter gamma -- the most fundamental relativistic gravity parameter and a direct measure for the presence of new physical interactions. BEACON will achieve an accuracy of 1 x 10^{-9} in measuring the parameter gamma, thereby going a factor of 30,000 beyond the present best result involving the Cassini spacecraft. Secondary mission objectives include: (i) a direct measurement of the frame-dragging and geodetic precessions in the Earths rotational gravitomagnetic field, to 0.05% and 0.03% accuracy correspondingly, (ii) first measurement of gravitys non-linear effects on light and corresponding 2nd order spatial metrics effects to 0.01% accuracy. BEACON will lead to robust advances in tests of fundamental physics -- this mission could discover a violation or extension of general relativity and/or reveal the presence of an additional long range interaction in physics. BEACON will provide crucial information to separate modern scalar-tensor theories of gravity from general relativity, probe possible ways for gravity quantization, and test modern theories of cosmological evolution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا