ترغب بنشر مسار تعليمي؟ اضغط هنا

185 - Benjamin L. Weiss 2014
We estimate several probability distributions arising from the study of random, monic polynomials of degree $n$ with coefficients in the integers of a general $p$-adic field $K_{mathfrak{p}}$ having residue field with $q= p^f$ elements. We estimate t he distribution of the degrees of irreducible factors of the polynomials, with tight error bounds valid when $q> n^2+n$. We also estimate the distribution of Galois groups of such polynomials, showing that for fixed $n$, almost all Galois groups are cyclic in the limit $q to infty$. In particular, we show that the Galois groups are cyclic with probability at least $1 - frac{1}{q}$. We obtain exact formulas in the case of $K_{mathfrak{p}}$ for all $p > n$ when $n=2$ and $n=3$.
We analyze the probability that, for a fixed finite set of primes S, a random, monic, degree n polynomial f(x) with integer coefficients in a box of side B around 0 satisfies: (i) f(x) is irreducible over the rationals, with splitting field over the rationals having Galois group $S_n$; (ii) the polynomial discriminant Disc(f) is relatively prime to all primes in S; (iii) f(x) has a prescribed splitting type at each prime p in S. The limit probabilities as $B to infty$ are described in terms of values of a one-parameter family of measures on $S_n$, called splitting measures, with parameter $z$ evaluated at the primes p in S. We study properties of these measures. We deduce that there exist degree n extensions of the rationals with Galois closure having Galois group $S_n$ with a given finite set of primes S having given Artin symbols, with some restrictions on allowed Artin symbols for p<n. We compare the distributions of these measures with distributions formulated by Bhargava for splitting probabilities for a fixed prime $p$ in such degree $n$ extensions ordered by size of discriminant, conditioned to be relatively prime to $p$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا